
SG24-5155-00

International Technical Support Organization

http://www.redbooks.ibm.com

RS/6000 Scientific and Technical Computing:
POWER3 Introduction and Tuning Guide

Stefan Andersson, Ron Bell, John Hague, Holger Holthoff
Peter Mayes, Jun Nakano, Danny Shieh, Jim Tuccillo

RS/6000 Scientific and Technical Computing:
POWER3 Introduction and Tuning Guide

October 1998

SG24-5155-00

International Technical Support Organization

© Copyright International Business Machines Corporation 1998. All rights reserved
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (October 1998)

This edition applies to XL Fortran Version 5.1.1 (5765-C10 and 5765-C11) running under AIX Version
4.3 (5765-C34) on an RS/6000 43P 7043 Model 260 Workstation.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. JN9B Building 045 Internal Zip 2834
11400 Burnet Road
Austin, Texas 78758-3493

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

Before using this information and the product it supports, be sure to read the general information in
Appendix D, “Special Notices” on page 199.

Take Note!

This book is based on a pre-GA version of a product and may not apply when the product becomes
generally available. We recommend that you consult the product documentation or follow-on
versions of this redbook for more current information.

Note

Contents

Figures .ix

Tables. .xi

Preface . xiii
The Team That Wrote This Redbook . xiv
Comments Welcome . xvi

Chapter 1. Introduction . 1
1.1 RS/6000 Processor Evolution . 1

1.1.1 POWER1 . 1
1.1.2 POWER2 . 2
1.1.3 PowerPC . 3
1.1.4 POWER3 . 3

1.2 SMP-Based System Views . 3
1.2.1 Job Level Parallelism with Single CPU Jobs 3
1.2.2 Automatic Parallelization (Fortran) . 4
1.2.3 Compiler Directives . 4
1.2.4 Message Passing Interface. 4
1.2.5 Using POSIX Threads . 5
1.2.6 Combined MPI/Threads Paradigm . 5

Chapter 2. The POWER3 Processor . 7
2.1 Processor Overview . 7
2.2 POWER3 Execution Core. 8
2.3 POWER3 Roadmap . 12
2.4 POWER3-Based Systems . 13

2.4.1 RS/6000 43P 7043 Model 260 . 13
2.4.2 IBM RS/6000 SP Nodes . 15
2.4.3 DOE ASCI Project . 15

Chapter 3. XL Fortran Version 5 . 17
3.1 SMP Support . 17
3.2 Support for POWER3 . 19
3.3 64-Bit Support . 19

3.3.1 Fortran Storage Classes . 20
3.3.2 32-Bit Mode . 21
3.3.3 32-Bit Mode, Large Address Space Model 22
3.3.4 64-Bit Mode . 22
3.3.5 Compiler Defaults and Limits . 23
3.3.6 64-bit Integer Arithmetic Support . 23
© Copyright IBM Corp. 1998 iii

3.4 Performance Improvements over Previous XL Fortran 24

Chapter 4. Using the SMP Feature of XL Fortran 29
4.1 How to Compile, Link, and Execute . 29
4.2 Consideration of Storage Classes in 32-Bit Mode. 33
4.3 Conditions for Automatic Parallelization . 36
4.4 Automatic Parallelization - Parallelism Analysis 38

4.4.1 Examples of Parallelism Analysis . 38
4.4.2 XL Fortran Messages Related to Parallelization 44

4.5 Automatic Parallelization - Cost-Based Analysis. 45
4.5.1 Cost-Based Analysis - Single Loops . 45
4.5.2 Cost-Based Analysis - Nested Loops . 46
4.5.3 How to Affect the Decision of Cost-Based Analysis 47

4.6 Directives . 50
4.6.1 PARALLEL DO Compiler Directive . 51
4.6.2 PARALLEL SECTIONS Compiler Directive 53
4.6.3 PERMUTATION Compiler Directive . 54
4.6.4 SCHEDULE Compiler Directive . 54
4.6.5 THREADLOCAL Compiler Directive . 56

4.7 NUM_PARTHDS Intrinsic Function. 56
4.8 XLSMPOPTS Environment Variable . 57
4.9 OpenMP Porting Considerations . 58

Chapter 5. Performance Libraries . 65
5.1 The ESSL Library . 65

5.1.1 Benefits of Using ESSL . 69
5.1.2 How to Use ESSL. 70
5.1.3 Performance Examples of ESSL. 70

5.2 MASS. 73
5.2.1 How to Use the MASS Library . 74
5.2.2 Performance of the MASS Library . 75
5.2.3 Further Tuning Possibilities Using Vector MASS. 77

Chapter 6. Message Passing Interface . 81
6.1 MPI in an SMP Environment. 81
6.2 MPI Communication Rates . 83

Chapter 7. Performance and Tuning Analysis 87
7.1 Relevant Information . 87
7.2 CPU Tuning . 90

7.2.1 Unrolling . 90
7.2.2 Divides . 93
7.2.3 Floating Point to Integer Conversion. 94
7.2.4 Fractional Part of a Number . 95
iv RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

7.3 Memory Tuning . 95
7.3.1 Copy. 95
7.3.2 Multiple Streams. 97
7.3.3 DAXPY . 98
7.3.4 Loads and Stores . 101
7.3.5 Prefetching Individual Cache Lines. 101

7.4 Large Stride . 102
7.4.1 Cache Effects . 102
7.4.2 Translation Lookaside Buffer Effects . 103

Chapter 8. Fortran Tuning Guide for Maximum Megaflops 107
8.1 The Tuning Process . 107

8.1.1 Tuning for I/O . 108
8.1.2 Locating the Hot Spots (Profiling) . 109
8.1.3 Use Pre-tuned Code, Such As ESSL . 111
8.1.4 Hand Tune the Code . 112

8.2 Recommended Compiler Options . 112
8.3 Architecture Independent Hand Tuning Review 114

8.3.1 Basic Coding Practices for Performance. 115
8.3.2 Commonly Occurring Examples . 116

8.4 Key Aspects of POWER3 (Model 260) Architecture 119
8.4.1 The POWER3 (Model 260) Level 1 Data Cache 119
8.4.2 The POWER3 (Model 260) Level 2 Data Cache 122
8.4.3 The Translation Lookaside Buffer (TLB) 123
8.4.4 The Superscalar Floating Point Units and Peak Megaflops 123

8.5 Tuning for Floating Point Performance on POWER3 (Model 260) . . . 126
8.5.1 Letting the Compiler Do the Tuning . 127
8.5.2 Getting and Understanding an Object Code Listing 127
8.5.3 Tuning for the L1 Cache . 129
8.5.4 Tuning for the CPU. 135

8.6 Some Comments on Parallel Coding for Model 260 144

Chapter 9. Throughput Measurements . 147
9.1 Copy Program . 147
9.2 User Programs . 149
9.3 Case Study: Matrix Multiplication . 150

9.3.1 The Computational Kernel . 151
9.3.2 Single Processor Implementation of DGEMM 153
9.3.3 Automatically Parallelized DGEMM. 156
9.3.4 MPI Implementations . 157

Chapter 10. Kernels, Codes, and Benchmarks 159
10.1 GAMESS . 159
10.2 Oil Reservoir Simulator . 160
 v

10.3 Weather Forecast Code . 161
10.4 Computational Fluid Dynamics: FIRE . 162
10.5 Crash Worthiness Analysis: RADIOSS . 165
10.6 Finite Difference Kernel . 167
10.7 Iterative Eigenvalues Solver . 169

Appendix A. Industry Standard Benchmarks . 173
A.1 LINPACK Benchmark . 173
A.2 SPEC95 . 174
A.3 STREAM . 174
A.4 NAS NPB 1.0 . 175

Appendix B. Enabling Vector Codes to POWER3 177
B.1 Data Access . 177
B.2 Data Dependency and Recursive Code . 177
B.3 Vector Length . 178
B.4 Conditional Processing . 178

Appendix C. Threads . 181
C.1 Symmetric Multiprocessing (SMP) Concepts and Architecture 181
C.2 Thread Implementation Model . 182
C.3 Understanding Threads . 183

C.3.1 Threads and Processes . 183
C.3.2 Threads Implementation. 185
C.3.3 Thread Scheduling . 185
C.3.4 Thread Models and Virtual Processors . 188
C.3.5 Contention Scope and Concurrency Level 191
C.3.6 libpthreads.a POSIX Threads Library. 192
C.3.7 libpthreads_compat.a POSIX Draft 7 Threads Library 192

C.4 A Simple Thread Program . 193
C.4.1 Using SMP Directives. 193
C.4.2 Using the Fortran PThread Module . 194
C.4.3 Conclusions . 197

Appendix D. Special Notices . 199

Appendix E. Related Publications . 203
E.1 International Technical Support Organization Publications 203
E.2 Redbooks on CD-ROMs . 203
E.3 Other Publications. 203
E.4 Information Available on the Internet . 204

How to Get ITSO Redbooks . 207
How IBM Employees Can Get ITSO Redbooks . 207
vi RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

How Customers Can Get ITSO Redbooks. 208
IBM Redbook Order Form . 209

List of Abbreviations. 211

Index . 213

ITSO Redbook Evaluation . 221
 vii

viii RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

Figures

1. POWER3 Processing Units (Model 260) . 8
2. Data Prefetch Overview . 11
3. POWER3 Chip Layout: 270 mm2 Die, 15 Million Transistors 13
4. Logical View of the Model 260 . 14
5. XL Fortran Version 5 Compiler Architecture . 18
6. Copy Rates of a Double Precision Array . 71
7. DAXPY Comparison . 72
8. Three Sorting Algorithms . 73
9. MASS Use of Exp(). 77
10. MPI Synchronous Transfer Rates . 85
11. MPI Asynchronous Transfer Rates . 85
12. Stream Rates for Data in Cache . 93
13. Single Processor Copy Rates . 96
14. Stream Rates for Data Not in Cache . 97
15. Single Stream Prefetch . 98
16. DAXPY: Single Run . 99
17. DAXPY: Best of 4 Runs (1) . 100
18. DAXPY: Best of 4 Runs (2) . 100
19. Stride versus Loop Count for L1 Cache. 104
20. Stride versus Loop Count for TLB . 105
21. The 4-Way Set-Associative POWER2 Data Cache 120
22. The 128-Way Set-Associative POWER3 Data Cache 121
23. POWER3 Floating Point Unit - Superscalar Pipeline. 125
24. Aggregate Rates for Untuned Copy. 148
25. Aggregate Rates for Tuned Copy . 148
26. Block Matrix Multiplication . 154
27. Performance of DGEMM . 157
28. M:1 Threads Model . 189
29. 1:1 Threads Model . 190
30. M:N Threads Model . 191
© Copyright IBM Corp. 1998 ix

x RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

Tables

1. Performance of POWER1 versus POWER2 . 2
2. POWER3’s Low Execution Latencies . 9
3. RS/6000 43P 7043 Model 260 Memory Bandwidth 12
4. Fortran Storage Classes and AIX Segments . 21
5. The Benchmark Environment . 25
6. CPU Time for Original Programs in Seconds . 25
7. CPU Time for Tuned Programs in Seconds. 26
8. Storage Areas and Their Maximum Sizes . 34
9. Four Different dcopy Approaches . 70
10. Three DAXPY Versions: . 72
11. Cycles of Some Functions . 76
12. Complex Exponential Function . 79
13. Power Function . 79
14. Advantages and Disadvantages of Msg Passing Techniques 82
15. Synchronous versus Asynchronous Transfer Times 86
16. Data Transfer Rates for L1, L2, and Memory . 88
17. Case Study T1: Performance of Tuned and Untuned Code 131
18. Case Study T2: Performance of Untuned and Tuned Code 134
19. Performance of Case Study T3 . 139
20. Performance of Load/Store Bound Loop. . 140
21. Summary of Copy Rates . 149
22. Real User Programs . 149
23. GAMESS Runs in Seconds . 160
24. Times for Oil Reservoir Simulator Code . 160
25. Times for Weather Forecast Code. 161
26. FIRE Kernel Benchmark Cases . 163
27. FIRE Kernel Benchmark Results . 163
28. FIRE Benchmark Results . 164
29. RADIOSS Benchmark Test Cases . 166
30. RADIOSS Benchmark Results. 166
31. CPU Time for SUBROUTINE JACOBI, (in Seconds) 172
32. LINPACK Performance . 173
33. SPEC95 Performance . 174
34. Sustained MB/s Memory Bandwidth Measured by STREAM 174
35. NAS NPB 1.0 (LU, SP, BT) Single CPU Performance, Time in Seconds 175
© Copyright IBM Corp. 1998 xi

xii RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

Preface

This redbook provides information to help you understand and exploit the
new generation of computer systems based on the RS/6000 POWER3
architecture. Specifically, this publication will address the following issues:

 • POWER3 features and capabilities

 • CPU and memory optimization techniques, especially for Fortran
programming

 • AIX XL Fortran Version 5.1.1 compiler capabilities and which options to
use

 • Parallel processing techniques and performance

 • Available libraries and programming interfaces

 • Performance examples on commonly used kernels and on several full
applications

The anticipated audience for this redbook is as follows:

 • Application developers

 • End users who may be involved in making modifications to applications

 • Technical managers responsible for equipment purchase decisions

 • Managers responsible for project planning

 • Researchers involved in numerical algorithm development

 • End users with an interest in understanding the performance of their
applications

While this publication is decidedly technical in nature, the fundamental
concepts are presented from a user point of view and numerous examples
are provided to reinforce these concepts. Furthermore, this publication is
organized such that the information becomes more detailed as one
progresses through the chapters. This organization will allow readers to stop,
once they have achieved the level of understanding they desire, without
having to search through the publication.

To some extent, this book should be regarded as a series of subtopics that
can be read alone. Each chapter is relatively complete in itself, referring to
other chapters where appropriate.
© Copyright IBM Corp. 1998 xiii

The Team That Wrote This Redbook

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Austin Center.

Stefan Andersson is a Staff Engineer/Scientist at IBM Poughkeepsie. He
has an MS in mathematics from the University of Heidelberg. He began his
work with IBM at the IBM Scientific Center, Heidelberg in 1990. He has been
involved in parallel computing on RS/6000 SP since 1992. Currently, he is a
member of the technical benchmark team at IBM Poughkeepsie. His areas of
expertise include performance tuning for the POWER architecture, distributed
memory coding and tuning for the RS/6000 SP, and shared memory coding
and tuning on IBM SMPs.

Ron Bell is an IBM IT Consultant in the UK. He has an MA in Physics and a
DPhil in Nuclear Physics from the University of Oxford. He has 27 years of
experience with IBM High Performance Computing. His areas of expertise
include the Fortran language, performance tuning for POWER architecture,
and MPI parallel coding and tuning for the RS/6000 SP. He has for many
years collaborated with HKS Inc. to optimize their ABAQUS product for IBM
platforms.

John Hague is an IBM IT Consultant in the UK. He obtained a PhD in High
Energy Physics at University College, London, and worked in this field at the
Rutherford Lab in the UK and the Lawrence Livermore Lab in Berkeley until
he joined IBM in 1970. John was assigned to the IBM ITSO in Poughkeepsie
in 1985 to provide worldwide technical support for the IBM Vector Facility.
Since then, he has worked exclusively in the scientific and technical area, and
has considerable expertise in vectorizing, parallelizing, and tuning scientific
programs, particularly in the Petroleum and Weather Forecasting areas.

Holger Holthoff is an IBM IT Consultant in Germany. He has been involved
in parallel computing on RS/6000 SP since he joined the IBM Scientific
Center, Heidelberg in 1994. Currently, he is a member of the RS/6000
Technical Support focusing on high-performance computing projects and
CAE applications in manufacturing industries. He obtained the Dipl.-Ing. and
Dr.-Ing. degree in mechanical engineering from University of Karlsruhe and
Braunschweig, respectively. His areas of expertise include performance
tuning for the POWER architecture and message passing programming for
the RS/6000 SP.

Peter Mayes is a Senior IT Specialist in the UK. He has 15 years of
experience in the field of high-performance computing. He holds the degrees
of MA in Mathematics, MSc in Mathematical Modeling and Numerical
xiv RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

Analysis, and DPhil in Engineering Mathematics, all from the University of
Oxford. His areas of expertise include Fortran programming, particularly for
high-performance and parallel computers, and administration of RS/6000
SPs.

Jun Nakano is an IT Specialist of IBM Japan. From 1990 to 1994, he was
with IBM Tokyo Research Laboratory and studied combinatorial optimization.
Since 1995, he has been involved in RS/6000 and SP benchmarks. He holds
MSc in physics from University of Tokyo. He is interested in algorithms,
computer networks, and operating systems.

Danny Shieh is a Senior Engineer/Scientist of IBM Austin. He joined the IBM
Palo Alto Scientific Center in 1969. From 1974 to 1976, he was assigned to
the Large Scale Computing department in IBM San Jose Research. From
1985 to 1986, he was assigned to the IBM International Technical Support
Center in Poughkeepsie, NY to support the IBM 3090 Vector Facility. He
joined the IBM RS/6000 team in 1992. His current assignment is technical
support of S&TC marketing for RS/6000 products. He received the MS and
PhD degrees in Atmospheric Sciences in 1967 and 1969, respectively, from
New York University.

Jim Tuccillo is an atmospheric scientist by training. He has attended Cornell
University, Old Dominion University, and Johns Hopkins University. Jim has been
involved in the development of Numerical Weather Prediction (NWP) Models on
high-performance vector, parallel vector, and distributed memory systems since
1980. Jim has worked in the NWP development labs of the US Weather Service
and NASA where he has been involved in the development of research and
operational NWP codes for weather forecasting in the US. Jim currently works for
IBM’s Global Government Industry organization where he is involved in issues
associated with NWP and high-performance computing on IBM’s SP system. Jim
has research interests in the areas of parallel algorithms and parallel
programming paradigms for high-performance, numerically intensive computing.

This project was coordinated by:

Scott Vetter IBM Austin

Thanks to the following people for their invaluable contributions to this
project:

Alan Adamson IBM Toronto

Yukiya Aoyama IBM Japan

Arthur Ban IBM Austin

Howard Brauer IBM Austin
 xv

Luke Browning IBM Austin

Frank Johnston IBM Poughkeepsie

Matthias Laux IBM Heidelberg

Lisa Martin IBM Toronto

Joan McComb IBM Poughkeepsie

Frank O’Connell IBM Austin

Mark Papermaster IBM Austin

Farid Parpia IBM Poughkeepsie

Jim Shearer IBM Watson Research

David Tuttle IBM Austin

Steve White IBM Austin

Comments Welcome

Your comments are important to us!

We want our redbooks to be as helpful as possible. Please send us your
comments about this or other redbooks in one of the following ways:

 • Fax the evaluation form found in “ITSO Redbook Evaluation” on page 221
to the fax number shown on the form.

 • Use the electronic evaluation form found on the Redbooks Web sites:

For Internet users http://www.redbooks.ibm.com

For IBM intranet users http://w3.itso.ibm.com

 • Send us a note at the following address:

redbook@us.ibm.com
xvi RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

Chapter 1. Introduction

This publication is designed to familiarize you with the IBM RS/6000
POWER3 architecture and provide you with the information necessary to
exploit the new high-end technical workstations based on this architecture.

The two-way symmetric multiprocessing (SMP) workstation RS/6000 43P
7043 Model 260 will be the first POWER3 system to be available. Thus, most
analysis presented in this publication refers to this system.

1.1 RS/6000 Processor Evolution

In this section, the stages of processor development are discussed, starting
with the POWER1 architecture through to the latest POWER3. Various
references for additional reading are included.

1.1.1 POWER1
The first RS/6000 products were announced by IBM in February of 1990, and
were based on a multiple chip implementation of the POWER architecture,
described in IBM RISC System/6000 Technology, SA23-2619. This technology is
now commonly referred to as POWER1, in the light of more recent
developments. The models introduced included an 8 KB instruction cache
(I-cache) and either a 32 KB or 64 KB data cache (D-cache). They had a
single floating-point unit capable of issuing one compound floating-point
multiply-add (FMA) operation each cycle, with a latency of only two cycles.
Therefore, the peak MFLOPS rate was equal to twice the MHz rate. For
example, the Model 530 was a desk-side workstation operating at 25 MHz,
with a peak performance of 50 MFLOPS. Commonly occurring numerical
kernels were able to achieve performance levels very close to this theoretical
peak.

In January of 1992, the Model 220 was announced, based on a single chip
implementation of the POWER architecture, usually referred to as RISC
Single Chip (RSC). It was designed as a low-cost, entry-level desktop
workstation, and contained a single 8 KB combined instruction and data
cache.

The last POWER1 machine, announced in September of 1993, was the
rack-mounted Model 990. It ran at 71.5 MHz and had a 32 KB I-cache and a
256 KB D-cache.
© Copyright IBM Corp. 1998 1

1.1.2 POWER2
Announced in September 1993, the Model 590 was the first RS/6000 based
on the POWER2 architecture, described in PowerPC and POWER2: Technical
Aspects of the New IBM RISC System/6000, SA23-2737. The most significant
improvement introduced with the POWER2 architecture for scientific and
technical applications is that the floating-point unit (FPU) contains two 64-bit
execution units, so that two floating-point multiply-add instructions may be
executed each cycle. A second fixed-point execution unit is also provided. In
addition, several new hardware instructions were introduced with POWER2:

 • Quad-word storage instructions. The quad-word load instruction moves
two adjacent double-precision values into two adjacent floating-point
registers.

 • Hardware square root instruction.

 • Floating-point to integer conversion instructions.

Although the Model 590 ran with only a marginally faster clock than the
POWER1-based Model 580, the architectural improvements listed above,
combined with a larger 256KB D-cache size, enabled it to achieve far greater
levels of performance, as shown in Table 1.

Table 1. Performance of POWER1 versus POWER2

In October 1996, IBM announced the RS/6000 Model 595. This was the first
machine to be based on the P2SC (POWER2 Super Chip) processor. As its
name suggests, this is a single chip implementation of the POWER2
architecture, enabling the clock speed to be increased further. The Model 595
runs at 135MHz, and the fastest P2SC processors, found in the Model 397
workstation and RS/6000 SP Thin4 nodes, run at 160 MHz, with a theoretical
peak speed of 640 MFLOPS.

Model 580 Model 590

Architecture POWER1 POWER2

MHz 62.5 66

D-cache 64KB 256KB

Peak MFLOPS 125 264

LINPACK DP MFLOPS 38 130

LINPACK % of peak 30% 49%

LINPACK TPP MFLOPS 104 237
2 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

1.1.3 PowerPC
The RS/6000 Model 250 workstation, the first to be based on the PowerPC
601 processor running at 66 MHz, was introduced in September, 1993. The
601 was the first processor arising out of the partnership between IBM,
Motorola, and Apple. The PowerPC architecture includes most of the
POWER instructions. However, some instructions that were executed
infrequently in practice were excluded from the architecture, and some new
instructions and features were added, such as support for symmetric
multiprocessor (SMP) systems. In fact, the 601 did not implement the full
PowerPC instruction set, and was a bridge from POWER to the full PowerPC
architecture implemented in more recent processors, such as the 603, 604,
and 604e. Currently, the fastest PowerPC-based machines from IBM for
technical purposes, the four-way SMP system RS/6000 7025 Model F50 and
the uni-processor system RS/6000 43P 7043 Model 150, use the 604e
processor running at 332 MHz and 375 MHz, respectively.

1.1.4 POWER3
The new POWER3 processor, described in detail in Chapter 2, “The
POWER3 Processor” on page 7, essentially brings together the POWER2
architecture, as currently implemented in the P2SC processor, with the
PowerPC architecture. It combines the excellent floating-point performance
delivered by P2SC’s two floating-point execution units, while being a 64-bit,
SMP-enabled processor ultimately capable of running at much higher clock
speeds than current P2SC processors.

1.2 SMP-Based System Views

Since the POWER3 architecture provides SMP support, POWER3-based
systems will feature multiple CPUs with a uniform access shared memory and
shared I/O resources. This section outlines the different ways in which these
multiple CPUs can be exploited, either by running multiple job streams to
achieve greater overall system throughput, or by using a shared or distributed
memory programming model to reduce the time to solve an individual
problem.

1.2.1 Job Level Parallelism with Single CPU Jobs
For work loads consisting of many independent jobs each using a single
CPU, the multiple CPUs of a POWER3 based system will provide greater
throughput performance than a uni-processor system. For example,
POWER3 based systems with two CPUs may provide twice the nominal
performance on a work load when compared with a comparable
Introduction 3

uni-processor system. Each POWER3 CPU will also provide an improvement
in performance over existing CPUs.

1.2.2 Automatic Parallelization (Fortran)
The XL Fortran compiler (Version 5.1.1 or later) provides support for
automatic parallelism of programs to provide increased performance so as to
reduce the elapsed time of a program. Essentially, the code is analyzed for
independent pieces of work that can be dispatched, in parallel, to the multiple
CPUs of a POWER3 based system. This SMP capability is also available on
machines using PowerPC processors, such as the Model F50. The ability of
the compiler to detect opportunities for parallelism can vary and is dependent
on the intrinsic properties of the problem being solved and the source code
implementation. The nominal performance improvement over using a single
CPU is generally limited to the number of CPUs on the POWER3 based
system. Typically, new programs can be written in a manner that allows for a
high-level of compiler-detected parallelism. Existing programs can often be
modified to allow for significant levels of parallel efficiency. The automatic
parallelization capabilities of XL Fortran can often be assisted through the
insertion of compiler directives, as discussed in the next section.

1.2.3 Compiler Directives
Compiler directives are often used in conjunction with the automatic
parallelization capability of the XL Fortran compiler to assist in situations
where the dependency analyzer is unable to detect independent pieces of
work. Compiler directives appear as Fortran comments so that code
portability is preserved. OpenMP is an evolving industry standard that will
provide for code portability across shared-memory parallel systems.

1.2.4 Message Passing Interface
The Message Passing Interface (MPI) is the industry standard for parallel
programming on distributed memory systems, such as the IBM RS/6000
Scalable Parallel (SP) system. Programs that have been parallelized using
the Message Passing Interface are highly portable between different
platforms. In general, MPI programs also perform excellently on SMP
systems. MPI is supported on clustered RS/6000 uni-processor machines as
well as on SMP systems.

With this paradigm, the programmer has explicitly decomposed the problem
to run as separate processes that communicate and synchronize through the
MPI library. The separate processes of an MPI program are transparently
mapped against the multiple CPUs of a POWER3 based system.
4 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

For IBM RS/6000 SP systems, an alternative approach exploiting SMP nodes
is to assign a separate MPI process to each CPU of each node. With this
approach, MPI message passing will take place at both the intra-node and
inter-node level, and threads are not required to address the multiple CPUs of
each node.

1.2.5 Using POSIX Threads
The thread programming interface is the native interface of parallel
programming on SMP systems, but also used for performance improvements
on uni-processor systems. On RS/6000, POSIX threads support is provided
through both a C and Fortran application program interface (API) and allows
for the exploitation of the multiple CPUs of a POWER3 based system. Since
POSIX threads is an industry standard, programs written using this library are
generally portable to other SMP platforms. At the time of publication, the
Fortran binding for pthreads is not part of the POSIX pthreads standard,
therefore, Fortran pthreads implementations may be AIX specific.

1.2.6 Combined MPI/Threads Paradigm
For IBM RS/6000 SP systems with SMP nodes, a combined MPI and threads
programming paradigm is also supported. With this approach, a single MPI
processes is assigned to each SMP node, and multiple threads are executed
on each node. The threads will be used to execute the computational kernels
so as to exploit the multiple CPUs on the node, and MPI communication will
take place between the nodes. Threads can be either explicitly created
through the POSIX Threads library or can be implicitly created with the
automatic parallelism features of the XL Fortran compiler (with or without
compiler directives), as discussed in 1.2.2, “Automatic Parallelization
(Fortran)” on page 4.
Introduction 5

6 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

Chapter 2. The POWER3 Processor

The POWER3 microprocessor introduces a new generation of 64-bit
processors especially designed for high performance and visual computing
applications. POWER3 processors are the replacement for the POWER2 and
POWER2 Super Chips (P2SC) in high-end RS/6000 workstations and
technical servers.

2.1 Processor Overview

The POWER3 implementation of the PowerPC architecture provides
significant enhancements compared to the POWER2 architecture. The SMP-
capable POWER3 design allows for concurrent operation of fixed-point
instructions, load/store instructions, branch instructions, and floating-point
instructions. The POWER3 is designed for ultimate frequencies of up to 600
MHz when fabricated with advanced semiconductor technologies such as
copper metallurgy and silicon-on-insulator (SOI). In contrast, the P2SC
design has reached its peak operating frequency at 160MHz. The first
POWER3 based system, RS/6000 43P 7043 Model 260, runs at 200 MHz.

Capable of executing up to four floating-point operations per cycle (two
multiply-add instructions), the POWER3 maintains the emphasis on
floating-point performance and memory bandwidth that has become the
hallmark of POWER2 based RS/6000 systems. Integer performance has
been significantly enhanced over the P2SC with the addition of dedicated
integer and load/store execution units, thus improving its SPECint95
performance relative to the 160 MHz P2SC by about 50 percent at 200 MHz.
This gives the POWER3 far more balanced performance, which is especially
notable in graphics intensive applications.

The POWER3 is a 64-bit PowerPC implementation with a 32-byte backside
L2 cache interface (private L2 cache bus), and a 16-byte PowerPC 6XX bus,
as shown in Figure 1. The POWER3 has a peak execution rate of eight
instructions per cycle (compared to six for the P2SC) and a sustained
performance of four instructions per cycle.

Significant investments in the chip’s data flow, instruction routing, and
operand buffering have been made in order to sustain a high computational
and corresponding data rate. The POWER3’s level-one (L1) data cache is an
efficient interleaved cache capable of two loads, one store, and one cache
line reload per cycle. Although half the size of the P2SC's cache, the L1 is
effectively supplemented by a dedicated second level (L2) cache, which may
be from 1 MB to 16 MB in size. Data and instruction prefetching mechanisms
© Copyright IBM Corp. 1998 7

improve the memory access performance by hiding memory latency. Also, the
large 128 byte line size takes advantage of the locality of reference (spacial
reuse) characteristic of large engineering and scientific data reference
patterns

Figure 1. POWER3 Processing Units (Model 260)

2.2 POWER3 Execution Core

Unlike some competitive chips, which need several pipeline stages before
instructions enter the first execution stage, POWER3 keeps this front end of
the pipeline short, using only three stages. POWER3 needs only one cycle to
access the instruction cache, one cycle to decode and dispatch the
instructions to different execution units, and one more cycle to access the
operands. POWER3’s relatively short pipeline keeps its mispredicted branch
penalty to only three cycles, up to 24 cycles shorter than its competitors.

Up to eight instructions (two floating-point, two load/store, two single-cycle
integer, a multi-cycle integer, and a branch) can be in execution in each cycle.
Ready instructions are issued out of order from the issue queues, allowing
instructions of different types, as well as of the same type, to execute out of
order. The load/store and branch instructions are issued in program order.
8 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

For branch instructions whose conditions are not known in the decode stage,
POWER3 uses a 2,048-entry branch history table (BHT) to predict the branch
direction. Because a branch is often resolved in the decode stage or soon
thereafter, the benefit of the BHT when used to predict the current encounter
of the branch is less in POWER3 than in designs with deeper pipelines. To
better use the BHT, however, POWER3 uses the BHT to predict both the
current and the next encounter of each conditional branch, using a branch
target address cache (BTAC).

POWER3 uses rename registers for the general-purpose registers (GPR),
floating-point registers (FPR), and the condition-code register (CCR) to allow
out-of-order and speculative execution of most instructions. The few
exceptions are stores and certain move-to-special-register instructions that
are difficult to undo. Although instructions can be issued out-of-order, and
thus, their operands can be read out-of-order from the registers, the rename
registers eliminate anti- and output-dependencies by enabling the registers to
be updated in program order.

POWER3 has two identical FPUs, each delivering up to two floating-point
operations per cycle. POWER3’s FPUs execute multiply-add instructions, as
Table 2 shows, taking only one cycle throughput to calculate the frequently
used (a*b+c) operation.

Table 2. POWER3’s Low Execution Latencies

The non-blocking caches support four outstanding L1 data demand requests
and two outstanding L1 instruction demand requests in order to reduce the
memory subsystem latency. The L1 cache also supports hits under misses,
the L1 cache allows a fifth demand request which hits the cache to proceed
even when there are four previous outstanding misses to the data cache. In

Instruction Number of Cycles

32 bit 64 bit

Integer Multiply 3-4 3-9

Integer Divide 21 37

FP Multiply or Add 3-4 3-4

FP Multiply-Add 3-4 3-4

FP Divide 14-21 18-25

FP Square Root 14-23 22-31
The POWER3 Processor 9

comparison, the POWER2 architecture allows only one outstanding cache
miss without blocking. Cache hits are satisfied within a single cycle. The
writeback data cache implements a four-state MESI cache coherence protocol
(possible states: modified, exclusive, shared, and invalid) to support SMP
environments.

POWER3 uses instruction- and data-prefetch mechanisms to reduce pipeline
stalls due to cache misses. The instruction cache is two-way interleaved on
cache-line boundaries, allowing one bank to be accessed for instruction
fetches while the other bank is accessed for the next cache line. When the
former access hits in the cache but the latter access does not, a prefetch
request for this next cache line is issued to the L2 cache. Because the
prefetch is still speculative, the request is not propagated to the main
memory. If it misses in the L2 cache, this allows the request to be canceled
upon detecting a mispredicted branch instruction. An instruction prefetch
takes six cycles from the 200 MHz L2 cache.

For the data cache, the Model 260 can prefetch up to four streams of data from
memory or L2 cache into L1 cache. To establish a prefetch stream, the
prefetch mechanism monitors every access that misses in the data cache,
searching for cache-miss references to two adjacent cache lines. For this
purpose, a stream address filter queue of depth 10 is used, which contains
the guessed next stream addresses. The filter is maintained by a least
recently used (LRU) mechanism in order to age out seldom used prefetch
streams. Upon finding such a pair of succeeding cache misses, it initiates a
prefetch request for the next cache line. The stream addresses, along with the
ascending or descending prefetch direction, is kept in a four-entry stream
address buffer. Once a prefetch stream is identified, the address of every
data-cache access is checked with the addresses in the stream address
buffer. When a match is found, a prefetch request for the next cache line is
made, and the address in the matching entry is updated with the address of
the new prefetch request. A simplified view on the prefetch hardware is given
in Figure 2.

When initially predicting the direction of a prefetch stream, it is assumed that
if the word that causes the cache-miss occurs in the bottom half of the cache
line, the next higher line will be required, but if the miss occurs in the top half,
then the next lower line will be required. Then data is being prefetched in
sequentially in either a forwards or backwards direction. If the initial
prediction is wrong, the direction is corrected for the subsequent stream.
10 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

Figure 2. Data Prefetch Overview

The 64-bit address space is managed by using 80-bit virtual addresses and
40-bit real memory addresses, which support up to 1 terabyte. A 256-entry
two-way set associative translation lookaside buffer (TLB) based on a least
recently used replacement algorithm is used to access 4 KB memory pages.

The performance of many technical applications is mainly determined by the
performance of the memory subsystem. POWER3 systems are designed to
deliver industry leading memory bandwidth, which has already been a
strength of the POWER2 architecture. The bandwidth, as listed in Table 3, in
terms of GB/s depends on the actual clock frequency. As an example the
DAXPY operation, y(i)=y(i)+a*x(i), yields a sustained memory bandwidth of
1.3 GB/s, close to the peak bandwidth of 1.6 GB/s of a POWER3 Model 260
system. DAXPY performance is analyzed in more detail in Chapter 7.3.3,
“DAXPY” on page 98.

The load latency, due to either a data or instruction L1 miss that hits the L2
cache, amounts nine CPU cycles. A data access that misses the L1 and L2
The POWER3 Processor 11

cache causes a latency of about 35 cycles on a Model 260. However, this
does not depend on the processor only, but also on the system.

Table 3. RS/6000 43P 7043 Model 260 Memory Bandwidth

2.3 POWER3 Roadmap

The first generation of POWER3 based systems will operate at CPU speeds
of 200 MHz and memory bus speeds of 100 MHz. The processor board will
hold a direct mapped L2 cache of 4 MB per processor. The initial chip design
does not support fractional processor-to-cache and processor-to-system
clock ratios (such as 3:2 mode). But the second generation of POWER3 chips
will remove this limitation. This will be the first design based on IBM’s
advanced CMOS-7S process. With help of this 0.2-micron process, which
uses copper interconnects, clock speeds of more than 300 MHz will be
achievable. The die size will shrink from 270 mm2 to 160 mm2, with a few
additional functions.

IBM plans a second derivative of POWER3 chips in a 0.18-micron process,
targeting speeds up to 500-600 MHz. This process may showcase IBM’s
unique Silicon-on-Insulator (SOI) technology. SOI protects the millions
transistors on a chip with a blanket of insulation, reducing harmful electrical
effects that consume energy and hinder performance. A floating-point and
integer performance of SPECfp95 70+ and SPECint95 30+, respectively, is
expected.

The faster POWER3 chips will support fractional bus modes (such as 5:2 and
7:2 for processor-to-bus and 3:2 for processor-to-cache interfaces) which will
allow the core to run at its full speed. Using a set-prediction mechanism, the
new chips will also support a four-way set-associative L2 cache.

Figure 3 on page 13 shows the high-level partition of logical units within the
POWER3 chip.

Access Interface
Width
[Bit]

Clock
Frequency

[MHz]

Bandwidth
[Byte/cycle]

Bandwidth
[GB/s]

Load Register from L1 128 200 2*8 3.2

Store Register to L1 64 200 8 1.6

Load/Store L1 from/to L2 256 200 4*8 6.4

Load/Store L1 from/to Memory 128 100 2*8 1.6
12 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

Figure 3. POWER3 Chip Layout: 270 mm2 Die, 15 Million Transistors

2.4 POWER3-Based Systems

The POWER3 CPU will be featured in several different computer systems.
There will be stand-alone workstations up through IBM RS/6000 SP nodes.

2.4.1 RS/6000 43P 7043 Model 260
The Model 260 is a desk-side RS/6000 system designed to perform as a
high-performance technical workstation, visual client, or workgroup server.
The mechanical package can accommodate up to two processor cards, two
memory cards, and five PCI adapters. It also supports two hot-swap DASD
bays (Ultra SCSI), two 5 1/4" media bays, and one floppy drive.

Each processor card carries one POWER3 chip running at 200 MHz.

The memory controller function is located on the planar. A system planar is
shown in Figure 4 on page 14. The memory chipset supports a 128-bit data
path to memory running at 100 MHz, giving the system a peak memory
The POWER3 Processor 13

bandwidth of 1.6 GB/s. The two processor cards have to share this
bandwidth. The chipset is not only an interface to the memory but also to the
6XX-MZ mezzanine bus used for the I/O.

Figure 4. Logical View of the Model 260

POWER3

200 MHz

4 MB L2

32 bytes
@ 200 MHz

256 MB - 2 GB

PCI Bridge PCI Bridge

6XX Data Bus
16 Bytes
100 MHz

6XX Address
100 MHz
3 cycle tenure

Memory Data Bus
16 bytes @ 100 MHz

6XX-MX Bus
66 MHz

3 PCI Slots
32-Bit / 33 MHz

2 PCI Slots
64-Bit / 50 MHz

Memory
Address

ISA Bridge
W83C553

Super I/O
87308

Audio
CS4236

Integrated

POWER3
 CPU Card

planar A

planar B

Memory Card

AB4
Clock

Service Processor

256 MB - 2 GB

Memory Card

POWER3

200 MHz

4 MB L2

32 bytes
@ 200 MHz

POWER3
 CPU Card

Data

U-SCSI
53C875

U2-SCSI
53C895

10/100 ETH
79C971

Addr/Cntl
14 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

Each memory card can carry between 256 MB and 2 GB of memory using
128 MB dual inline memory modules (DIMMs), giving the system a maximum
total memory of 4GB. These sizes will double when 256 MB DIMMs become
available.

2.4.2 IBM RS/6000 SP Nodes
In the future, there will be several nodes for the IBM RS/6000 SP available.
The first one will be based on the RS/6000 43P 7043 Model 260. The
differences between these node and the Model 260 are the form factor in
order to fit into the IBM RS/6000 SP frame and the ability to connect it to the
high performance switch. In order to fulfill the Accelerated Strategic
Computing Initiative (ASCI) contract, IBM will also offer an eight- and later a
16-way SMP based on the POWER3 processor. These models are expected
to contain several unique features and new design points.

2.4.3 DOE ASCI Project
On July 26, 1996, Lawrence Livermore National Laboratory (LLNL)
announced it had selected IBM for an award of a $93 million contract to build
the world’s fastest supercomputer as part of the Department of Energy’s
(DOE) Accelerated Strategic Computing Initiative (ASCI) program, called
ASCI Blue Pacific. The final configuration of the proposed system will consist
of:

 • 512 eight way POWER3 SMP nodes
 • More than three teraflops peak performance
 • 2500 GB total system memory
 • 75 terabytes global disk capacity
 • 6400 MB/s I/O bandwidth

In order to meet the increased need for computing power, the next step after
ASCI Blue Pacific, called ASCI White, is already announced. The ASCI White
System will consist of 8192 POWER3+ CPUs capable of peak speed of 10
trillion operations per second.

Both the ASCI Blue Pacific and the ASCI White project will drive the future
RS/6000 and IBM RS/6000 SP system development in hardware as well as
software. The result of this work will provide future gains through improved
products for IBM Customers.

For more information about the ASCI project, visit the following Web pages:

http://www.doe.org
http://www.llnl.gov/asci/
The POWER3 Processor 15

16 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

Chapter 3. XL Fortran Version 5

XL Fortran Version 5 is the first XL Fortran compiler that has the ability to
exploit SMP processors concurrently for improving the performance. It is also
the first to produce object code that runs in 64-bit mode on AIX 4.3 or later.
This chapter mainly describes differences between XL Fortran Version 5.1
and previous versions that users should be aware of for compiling and
running programs on POWER3 hardware.

3.1 SMP Support

One of the most outstanding features of XL Fortran Version 5 is its support for
SMP. The compiler automatically identifies DO loops that can be parallelized
and makes object code that runs in a multi-threaded fashion. Or, you can give
directives to the compiler in order to provide additional information on the
code or to force the compiler to parallelize certain DO loops. Detailed
explanations and examples will be given in Chapter 4, “Using the SMP
Feature of XL Fortran” on page 29. An overview of compiler architecture is
presented here. (See D. Kulkarni et al., “XL Fortran Compiler for IBM SMP
Systems,” AIXpert Magazine, December 1997.)

Figure 5 on page 18 shows the path through the XL Fortran compiler when
the parallelization facility is activated with the -qsmp option. The Fortran front
end takes your program as input, checks the program syntactically and
semantically, and produces an intermediate representation of it. The
scalarizer transforms the Fortran 90 array language constructs into scalar DO
loops.

The subsequent locality optimizer and serial and SMP optimizer perform
optimizations, including loop reordering, array padding, loop tiling, loop
unrolling, elimination of conditionals, and so on. If given the target
architecture by the -qarch option, the compiler takes into account hardware
specifics, such as cache size and cache line size. The parallelizer uses loop
reordering transformations to automatically parallelize loops at outermost
levels, which minimizes parallelization overheads, such as barrier
synchronization at the end of parallel loops, and ensures larger computation
granularity on each of the processors of the SMP system. The outliner does
the converse of subroutine inlining. It converts DO loops, which are decided
to be parallelized, into subroutines.

You can see how a program is outlined by reading the outlining report section
of hotlist, which is generated by the -qreport=hotlist compiler option. An
example of hotlist is given in 4.1, “How to Compile, Link, and Execute” on
© Copyright IBM Corp. 1998 17

page 29. By invocation of xlf_r or xlf90_r, the object code is linked with
thread-safe libraries for parallel execution.

Figure 5. XL Fortran Version 5 Compiler Architecture

In addition to automatic parallelization, XL Fortran Version 5 provides the
pthreads library module (f_pthread) as an interface to the AIX pthreads
library. See XL Fortran for AIX Language Reference Version 5 Release 1,
SC09-2607 or "XL Fortran Compiler for IBM SMP Systems," AIXpert
Magazine, December 1997 for details.

Fortran Frontend

Scalarizer

Locality Optimizer

Serial/SMP Optimizer

Parallelizer

Outliner

Optimizing Backend

Object Code

User Program

Dataflow and
Dependence Analyzer

Loop Transformer

Data Transformer

Runtime
18 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

3.2 Support for POWER3

The XL Fortran compiler has a -qarch option that tries to produce efficient
object code that may contain machine instructions specific to the target
architecture. The default value is -qarch=com, which means the executable
can be run on any hardware platform of POWER and PowerPC, but in order to
fully use the hardware’s capability, it is recommended to use the appropriate
-qarch option, especially for scientific and technical applications. In addition
to architectures supported by XL Fortran Version 4.1 (that is, com, pwr, pwr2,
ppc, and so forth), XLF Version 5.1 introduces two new architectures: pwr3
(V5.1.1) and rs64a (V5.1.0). Currently, RS/6000 Model 260 (and its
corresponding SP nodes) and RS/6000 S70 (S7A) conform to pwr3 and
rs64a, respectively.

Since XL Fortran does not optimize the program by default, you should
specify appropriate options when compiling. To begin with, it is recommended
to use the following combination of compiler options for POWER3 machines:

$ xlf -qarch=pwr3 -O3 -qtune=pwr3 yourprogram.f

The -O3 option instructs the compiler to do the highest level optimization.
This optimization level has the potential to rearrange the semantics of the
programs. Although it produces a mathematical equivalent result, it may not
produce a bitwise identical result with the unoptimized code. If this is a
concern, you can add the -qstrict option to ensure that you get the bitwise
identical results with the unoptimized code. The -qarch and -qtune options
both perform architecture-dependent optimization for the POWER3. Further
tuning of compiler options should be carried out with these options as a
starting point. More detailed discussions on compiler options are given in 8.2,
“Recommended Compiler Options” on page 112.

3.3 64-Bit Support

In order to be able to exploit the huge address space offered by 64-bit
addressing, Fortran programmers need to understand how memory is
handled by the AIX and the XL Fortran compiler, both in 32-bit and 64-bit
mode. This section gives both the background and some practical
implications of 32-bit and 64-bit addressing.

In AIX, virtual memory is divided into segments. In 32-bit mode, a 32-bit
address is divided into a 28-bit field, which gives the offset within a 256 MB
(228 bytes) segment, and a 4-bit field, which selects between 16 segments. In
64-bit mode, 28 bits are again used to address offsets within a 256 MB
XL Fortran Version 5 19

segment, but the number of segments which may be addressed is vastly
increased.

3.3.1 Fortran Storage Classes
Before explaining how segments are used, it is necessary to understand
Fortran storage classes. Each variable belongs to one of the following
storage classes:

Automatic For variables not retained once the procedure ends

Static For variables which retain memory throughout the
program

Common For common block variables

Controlled Automatic For automatic arrays

Controlled For allocatable arrays

From the point of view of the operating system, these classes are categorized
as one of the following types:

data Initialized static and common variables

bss Uninitialized static and common variables

heap Controlled (or, allocatable) arrays

stack Controlled automatic arrays and automatic variables

The size of these types, where the size is known before execution begins,
may be determined by running the size command against the executable as
follows:

$ size -f a.out
a.out: 1132(.text) + 216(.data) + 134217744(.bss) + 452(.loader) +
12(.except) = 134219556 (32-bit executable)

$ size -X 64 -f a.out
a.out: 1112(.text) + 272(.data) + 134217760(.bss) + 559(.loader) +
20(.except) = 134219723 (64-bit executable)

Note that initialized static and common variables and arrays are stored in the
data area of the executable file itself; so very large initialized arrays can lead
20 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

to very large executable files. These Fortran storage classes and types are
mapped onto AIX segments, as listed in Table 4.

Table 4. Fortran Storage Classes and AIX Segments

Data, bss, and heap are generically termed user data and the permissible
maximum size of user data is governed by the “data” process limit. Stack is
governed by the “stack” process limit. Process limits can be set on a per-user
basis in the file /etc/security/limits. Both hard and soft limits may be set in this
file. You may then use the ulimit command to raise or lower the soft limit up
to the hard limit, or to lower (but not raise) the hard limit.

3.3.2 32-Bit Mode
The default mode is the 32-bit mode. As seen from Table 4, all storage
classes are allocated to segment 2, a single 256 MB segment. By default in
AIX 4.3, the soft limit for user data is 128 MB and for stack is 64 MB. The hard
limits are usually set to unlimited by the root user. The linker flags -bmaxdata
and -bmaxstack may be used to increase the permissible data and stack
sizes beyond the soft limits up to the hard limits, without setting the shell’s
process limits using ulimit. Note, however, that use of the -bmaxdata flag
selects the “Large Address Space Model”, described in 3.3.3, “32-Bit Mode,
Large Address Space Model” on page 22. If a process exceeds its data limit,
it will fail to load if the size of data is known from the object file, or an
ALLOCATE statement will fail if the heap grows too large. If the stack limit of
a program is exceeded at run time, it will fail with a “Segmentation fault” error
message.

Fortran Storage
Class

Type AIX segment
(32-bit)

AIX segment
(32-bit, with
-bmaxdata)

AIX segment
(64-bit)

Static Data or BSS seg. 2
(256 MB)

segs. 3-10
(2 GB)

segs. 0x10
-0x6FFFFFFF
(4.5 x 105 TB)Common

Controlled Heap

Automatic Stack seg. 2
(256 MB)

seg. 2
(256 MB)

segs. 0xF0000000
-0xFFFFFFFF
(6.5 x 104 TB)Controlled

Automatic
XL Fortran Version 5 21

3.3.3 32-Bit Mode, Large Address Space Model
If the program is linked with the flag -bmaxdata:N, then N bytes are allowed
for the user data area, and the user data area is moved from segment 2 to
segments 3 through 10, allowing a total of eight segments, or 2 GB, of user
data. For example, to allow up to 512 MB, or two segments, of user data, link
with the flag -bmaxdata:0x20000000. Note that even if N is less than 256 MB,
the user data area resides above segment 2.

As shown in Table 4 on page 21, the user stack area still resides in segment
2. In other words, in either 32-bit mode, the size of the stack (automatic
variables and Fortran 90 automatic arrays) is limited to a little less than 256
MB.

Even if a program is linked to use the Large Address Space Model, it is still
limited by its stack process limits and its hard data process limit, as explained
above.

3.3.4 64-Bit Mode
XL Fortran introduced a new compiler option, -q64, in Version 5.1, which
allows the object code to run in 64-bit mode. As seen from Table 4 on page
21, the permissible sizes of stack and user data are huge, although they are
still limited by the process limits discussed above. And as with 32-bit mode,
-bmaxstack and -bmaxdata may be used to go beyond the soft limits, up to
the hard limits, without setting the shell’s limits with the ulimit command.
However, in this case the -bmaxdata flag does not change the addressing
model.

Care should be taken when increasing the size of data and/or stack. The
user data comes from the lower address area of segment 2, whereas the
user stack area is allocated from the top of the segment. There are no
checks made to ensure that the user stack area doesn’t overlap with the
user data area. If the stack overwrites the data area, it is possible either for
the program to end abnormally, or worse, for the program to fail silently and
produce incorrect results.

Take Note
22 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

3.3.5 Compiler Defaults and Limits
Although the potential size of stack and user data is effectively limited only by
the physical memory and paging space installed, there are some other
implications of using the -q64 option and 64-bit mode:

 • The default size of an integer POINTER (often called Cray pointers or Sun
pointers to distinguish them from standard Fortran 90 pointers) is 8 bytes
in 64-bit mode.

 • The maximum array size increases to approximately 240 bytes.

 • The maximum dimension bound range is extended to [-263, 263-1].

 • The maximum array size for array constants has not been extended and
will remain the same as the maximum in 32-bit mode. The limit depends
on the space used by the compiler for a particular program.

 • Arrays with a size greater than 231-1 cannot be initialized.

 • The maximum iteration count for array constructor implied DO loops
increases to 263-1.

 • The maximum character variable length extends to approximately 240
bytes.

 • The maximum length of character literals remains the same as in 32-bit
mode. This is limited by the maximum length of a single (possibly
continued) Fortran statement, currently 6700 characters.

 • The LOC intrinsic function returns an INTEGER(8) value.

The -q64 option can be combined with -qhot, -O4, -qsmp, and -qipa options in
version 5.1.1. Currently, settings for the -qarch option that are compatible
with the -q64 option are, -qarch=auto (if compiling on a 64-bit system),
-qarch=com, -qarch=ppc, -qarch=rs64a, and -qarch=pwr3. Note that you
cannot mix 32-bit and 64-bit object files to create an executable.

3.3.6 64-bit Integer Arithmetic Support
In order to use the POWER3’s native 64-bit integer computation, you need to
compile the program with the -q64 option, and define integers explicitly in the
program as INTEGER*8 or use the -qintsize=8 compiler option to make the

The default INTEGER and the default REAL size remains 4 bytes in 64-bit
mode.

Important
XL Fortran Version 5 23

default size of INTEGER to 8 bytes. Integer constants can have INTEGER*8
attribute by adding a suffix _8 as in 123456_8.

3.4 Performance Improvements over Previous XL Fortran

This section presents results of a benchmark for a customer, and it shows the
improved performance of XL Fortran Version 5.1 and the relative
performance of the P2SC chip (160 MHz) and the POWER3 chip (200 MHz).
The benchmark was done for the following 14 programs:

cfd Computational fluid dynamics

finite Finite element method structure analysis iterative
eigenvalue solver

modyn Molecular dynamics

ns3d 3-D computational fluid dynamics

pureg Monte Carlo simulation of gauge theories QCD

bem3d 3-D transient enclosure flow

crystal Computational physics software package

jcg3d 3-D solid structure FEM by J-CG solver static, Yale format

chamber Time-dependent 3-D computational fluid dynamics

deft Molecular dynamics

enzlong Life science chemistry

cirta Computational fluid dynamics

mopac93 Computational chemistry software package (IBM)

gamess Computational chemistry software package

The programs were run serial and, for each program, the sum of user CPU
time and system CPU time for the original version and the tuned version was

In 64-bit mode, use INTEGER*8 loop variables for better performance.

Important
24 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

reported. The RS/6000 systems and the software used for the benchmark are
listed in Table 5.

Table 5. The Benchmark Environment

The programs were linked with ESSL (for three tuned codes) and the MASS
library. For execution on POWER3, a POWER3-enabled ESSL was used. The
Fortran preprocessors used were VAST and KAP, which were both 1995
released versions.

Table 6 shows the results of original programs.

Table 6. CPU Time for Original Programs in Seconds

P2SC/XLF3 P2SC/XLF5 POWER3/XLF5

CPU Clock 160 MHz 160 MHz 200 MHz

Memory 1 GB 1 GB 2 GB

AIX 4.3 4.3 4.3

XL Fortran 3.2.4 5.1.1 5.1.1

Compiler option -qarch=pwr2 -O3 -qarch=pwr2 -O3 -qarch=pwr3 -O3

P2SC/
XLF3 (A)

P2SC/
XLF5 (B)

POWER3/
XLF5 (C)

Ratio
(A)/(B)

Ratio
(B)/(C)

Prepro-

cessor

cfd 125.5 115.3 101.1 1.09 1.14 vast

finite 296.5 289.4 184.0 1.02 1.57

modyn 744.4 640.5 593.0 1.16 1.08

ns3d 236.0 237.5 194.4 0.99 1.22 kap

pureg 666.2
676.8

697.0
659.3

532.7
505.3

0.96
1.03

1.31
1.30

kap

bem3d 372.7 347.9 284.4 1.07 1.22 vast

crystal 7901.1 7621.0 6177.8 1.04 1.23

jcg3d 156.0 155.0 166.5 1.01 0.93

chamber 28.1 24.5 18.7 1.15 1.31

deft 9.5 8.4 7.6 1.13 1.11

enzlong 80.1 67.6 65.2 1.18 1.04 vast

cirta 74.9 73.2 53.2 1.02 1.38 kap
XL Fortran Version 5 25

XL Fortran Version 5.1.1 shows a marked improvement in optimizing these
programs on the average of seven percent over Version 3.2.5, and because
of this improvement of the compiler, the Fortran preprocessors seem less
effective. Only jcg3d became slower on POWER3 than P2SC, whose key
kernel is sparse matrix-vector multiplication. The new cache organization and
size of POWER3 was not able to hold the indirect addressing vector in cache.
However, in general, the load/store units of POWER3 greatly enhanced
kernels in these benchmark programs, and when comparing P2SC/XLF5 and
POWER3/XLF5, POWER3 was faster by 23 percent on average. It was also
observed that the majority of these programs gained performance
improvement by using the MASS library.

Table 7 shows the results of tuned programs.

Table 7. CPU Time for Tuned Programs in Seconds

mopac93 4899.6 3840.2 3824.5 1.28 1.00

gamess 317.0 352.2 218.7 0.90 1.61

Average 1.07 1.23

P2SC/
XLF3 (A)

P2SC/
XLF5 (B)

POWER3/
XLF5 (C)

Ratio
(A)/(B)

Ratio
(B)/(C)

Note

cfd 69.6 67.3 64.3 1.03 1.05

finite 114.0 111.6 107.6 1.02 1.04

modyn 66.3 71.5 59.4 0.93 1.20

ns3d 164.2 157.4 131.3 1.04 1.20

pureg 183.4 184.2 167.6 1.00 1.10

bem3d 69.8 66.1 55.0 1.06 1.20

crystal not
tuned

jcg3d 87.0 87.1
76.9

72.7
63.4

1.00 1.20
1.21

tune 1
tune 2

chamber 18.9 16.5 15.7 1.15 1.05

deft 6.3 6.4 6.1 0.98 1.05

P2SC/
XLF3 (A)

P2SC/
XLF5 (B)

POWER3/
XLF5 (C)

Ratio
(A)/(B)

Ratio
(B)/(C)

Prepro-

cessor
26 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

The tuned versions did not need the preprocessor for performance, and the
improvement of the compiler had less impact on tuned programs, that is,
P2SC/XLF5 was faster than P2SC/XLF3 by only three percent on the
average. Still for tuned programs, POWER3/XLF5 was faster than
P2SC/XLF5 by 14 percent on the average.

enzlong 69.3 67.2 64.4 1.03 1.04

cirta 60.9 52.2 36.8 1.17 1.42

mopac93 2279.3 2257.5 2058.4 1.01 1.10

gamess not
tuned

Average 1.03 1.14

P2SC/
XLF3 (A)

P2SC/
XLF5 (B)

POWER3/
XLF5 (C)

Ratio
(A)/(B)

Ratio
(B)/(C)

Note
XL Fortran Version 5 27

28 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

Chapter 4. Using the SMP Feature of XL Fortran

Starting with Version 5.1, the XL Fortran compiler provides an option, -qsmp,
which instructs the compiler to automatically parallelize Fortran DO loops.
This includes both DO loops coded explicitly by the user and DO loops
generated by the compiler for array language constructs, such as FORALL
and array assignment. However, the compiler will only automatically
parallelize loops that are independent, that is, loops whose iterations can be
computed independently of any other iterations.

While automatic parallelization might be sufficient for some users, the SMP
directives give you an option of providing additional information about the
source code to the compiler. The information you pass to the compiler will
either be used during automatic parallelization or to specify that certain parts
of the program can be parallelized. For example, a directive
ASSERT(ITERCNT(100)) gives an estimate to the compiler about roughly
how many iterations the DO loop will typically execute, and the PARALLEL
DO directive specifies that the DO loop immediately following it should be
executed in parallel.

Some of the directives available for XL Fortran 5.1 conform to the OpenMP
Specification Version 1.0 which defines directives and APIs for SMP
workstations. Currently, OpenMP is endorsed by more than 20 hardware and
software vendors, including IBM. It is probably that the future releases of XL
Fortran will become more compatible with OpenMP and that the portability of
codes will increase. For details of OpenMP, visit http://www.openmp.org/.

In this chapter, only topics that are thought to be useful in parallelizing real
applications are discussed. Not all of the SMP features of XL Fortran are
explained. For comprehensive documentations, refer to XL Fortran for AIX
Language Reference Version 5 Release 1, SC09-2607 and XL Fortran for
AIX User’s Guide Version 5 Release 1, SC09-2606.

4.1 How to Compile, Link, and Execute

As an example, consider the following code that adds all the positive integers
up to 100:

sample.f

PROGRAM MAIN
 PARAMETER (N=100)
 INTEGER A(N), S
 DO I=1, N
© Copyright IBM Corp. 1998 29

 A(I) = I
 ENDDO
 S = 0
!SMP$ PARALLEL DO REDUCTION(+:S)
 DO I=1, N
 S = S + A(I)
 ENDDO
 PRINT *, S
 END

The line beginning with !SMP$ is an example of XL Fortran directive that tells
the compiler that the following DO loop should be executed in parallel and
that the variable S is used for storing summation. Details of directives will be
described later in this chapter. Typically, the preceding code is compiled as
follows:

$ xlf90_r -qfixed -O3 -qstrict -qsmp sample.f

The option -qsmp specifies that the object code may be run in parallel, and
that the invocation commands you use should be either xlf_r or xlf90_r so that
the code is automatically linked with thread-safe libraries. Otherwise, you
have to be responsible for linking with appropriate libraries. If you want two
threads for execution, set the XLSMPOPTS environment variable as

$ export XLSMPOPTS=parthds=2

and if necessary, the value of parthds can be accessed from inside of the
code by using the NUM_PARTHDS intrinsic function, whose usage will be
illustrated in Section 4.7, “NUM_PARTHDS Intrinsic Function” on page 56.
The default value of parthds is the number of on-line processors of the
machine.

You can see how the code is parallelized (or not) by looking into the .lst file
produced by the smplist suboption of the -qreport option:

$ xlf90_r -qfixed -O3 -qstrict -qsmp sample.f -qsource -qreport=smplist

Note that this report is produced before loop and other optimizations are
performed. The contents of sample.lst are as follows. (The options section
and tail sections are omitted.)

>>>>> SOURCE SECTION <<<<<
 1 | PROGRAM MAIN
 2 | PARAMETER (N=100)
 3 | INTEGER A(N), S
 4 | DO I=1, N
 5 | A(I) = I
 6 | ENDDO
30 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

 7 | S = 0
 8 |!SMP$ PARALLEL DO REDUCTION(+:S)
 9 | DO I=1, N
 10 | S = S + A(I)
 11 | ENDDO
 12 | PRINT *, S
 13 | END
** main === End of Compilation 1 ===

>>>>> PARALLELIZATION AND LOOP TRANSFORMATION SECTION <<<<<

1585-107 *** SMP Parallelization Report ***

 program main()
 integer*4 :: main
 integer*4 :: a(1:100)
 integer*4 :: s
 integer*4 :: i
 address :: #ALLOCATEMP
 integer*4 :: #1
 integer*4 :: wct_1
 integer*4 :: SSA_STACK_2
 integer*4 :: SSA_STACK_4
 external :: main
 integer*4 :: main
 external :: __trap
 external :: _xlfBeginIO
 integer*4 :: _xlfBeginIO
 external :: _xlfWriteLDInt
 external :: _xlfEndIO
 integer*4 :: _xlfEndIO
 external :: _xlfExit
 external :: TRAP
 program main()
 #ALLOCATEMP = 0
C 1585-501 Original Source Line 4
 PARALLEL do i=1,100,1
 a(i) = i
 end do
 s = 0
C 1585-501 Original Source Line 9
 PARALLEL do i=1,100,1
 s = s + a(i)
 end do
 #1 = _xlfBeginIO(6,257,0,0,0,0,0)
 call _xlfWriteLDInt(#1,s,4,4)
 wct_1 = _xlfEndIO(#1)
 call _xlfExit(0)
 TRAP(3)
 return
 end

In the report, PARALLEL do indicates that the following loop is parallelized. In
this case, both the initialization loop and the summation loop are parallelized
as expected. In 4.4.2, “XL Fortran Messages Related to Parallelization” on
page 44, you will see what kind of messages XL Fortran outputs when it does
not parallelize particular loops. If you specify -qreport=hotlist, even more
detailed information will be reported. The following is a part of the hotlist of
Using the SMP Feature of XL Fortran 31

the sample code where the sum is calculated. (For explanation and
readability, the line numbers are added and the line continuation is modified.)

>>>>> PARALLELIZATION AND LOOP TRANSFORMATION SECTION <<<<<

1585-103 *** Loop Transformation Report ***
...

1585-105 *** Outlining Report ***
...

1 s = 0
 2 C 1585-501 Original Source Line 9
 3 if ((_xlsmpInCritical() .eq. 0 .and. _xlsmpInParallel() .eq. 0
 4 & .and. (1)) .ne. 0) then
 5 __pardo_do_ctl_13(1) = int(1)
 6 __pardo_do_ctl_13(2) = int(100)
 7 __pardo_do_ctl_13(3) = int(1)
 8 __pardo_chunk_ctl_14(1) = 1
 9 __pardo_chunk_ctl_14(2) = 5
 10 __pardo_chunk_ctl_14(3) = 0
 11 __pardo_chunk_ctl_14(4) = 0
 12 __pardo_flags_15 = 3
 13 call _xlsmpParDoSetup(__pardo_flags_15,0,
 14 & __pardo_do_ctl_13,
 15 & __pardo_chunk_ctl_14,
 16 & __main_out_2,
 17 & NARGS(__main_out_2) - 1,
 18 & PERCENTARG(1,__main_out_2,2),
 19 & PERCENTARG(100,__main_out_2,3),
 20 & PERCENTARG(1,__main_out_2,4),a,s)
 21 else
 22 C 1585-501 Original Source Line 9
 23 do i=1,100,1
 24 s = s + a(i)
 25 end do
26 end if

 27 #1 = _xlfBeginIO(6,257,0,0,0,0,0)
 28 call _xlfWriteLDInt(#1,s,4,4)
 29 wct_1 = _xlfEndIO(#1)
 30 call _xlfExit(0)
 31 TRAP(3)
 32 return
 33 contains
 34 subroutine __main_out_2(__lib_ctl_2,
 35 & __do_from_2,
 36 & __do_to_2,
 37 & __do_step_2,a_2,s_2)
 38 integer*4 :: __lib_ctl_2
 39 integer*4 :: __do_from_2
 40 integer*4 :: __do_to_2
 41 integer*4 :: __do_step_2
 42 integer*4 :: a_2(1:100)
 43 integer*4 :: s_2
 44 integer*4 :: __pardo_from_2
 45 integer*4 :: __pardo_to_2
 46 integer*4 :: __pardo_step_2
 47 integer*4 :: i_2
 48 integer*4 :: local_accum_s_2
 49 local_accum_s_2 = 0
32 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

 50 C 1585-501 Original Source Line 9
51 do while (_xlsmpParDoChunk(__lib_ctl_2,

 52 & __pardo_from_2,
 53 & __pardo_to_2,
 54 & __pardo_step_2) .eq. 1)
 55 do i_2=__pardo_from_2,__pardo_to_2,__pardo_step_2
 56 local_accum_s_2 = local_accum_s_2 + a_2(i_2)
 57 end do
 58 i_2 = i_2 - __pardo_step_2 + __do_step_2
 59 end do
 60 call _xlsmpGetDefaultSLock(__lib_ctl_2)
 61 s_2 = s_2 + local_accum_s_2
 62 call _xlsmpRelDefaultSLock(__lib_ctl_2)
 63 return
 64 end
 65 end

The hotlist is a pseudo-Fortran listing, which is not meant to be compiled as it
is, but you can see how the compiler outliner converts the DO loops into
subroutines. The IF statement in lines 3 and 4 decides whether to execute the
DO loop in parallel (lines 5-20) or in serial (lines 23-25). This is because the
DO loop may not be executed in parallel depending on whether the loop is a
nested parallel loop or whether the loop appears in a critical section. In
addition, the IF clause may control whether a loop is parallelized (section
4.6.1.3, “IF” on page 53). You do not see any DO statements in lines 5-20.
Instead, the DO loop is converted to a subroutine call to _xlsmpParDoSetup,
which divides the work into chunks and assigns these chunks to threads
indicating which procedure to execute, that is, __main_out_2 defined in lines
34-64, and which arguments to pass to this subroutine (lines 18-20). In
__main_out_2, each thread is supposed to calculate the sum of its assigned
portion into the variable local_accum_s_2, and this local sum is added to the
global sum, s_2. The lock mechanism (lines 60 and 62) assures that only one
thread can change the value of s_2 at a time.

4.2 Consideration of Storage Classes in 32-Bit Mode

When using the -qsmp option and running a program in parallel in 32-bit
mode, it is important to understand the relationship between the types of
variables that appear in the loop and the limits on their size. Table 4 on page
21 shows the XL Fortran storage classes and their corresponding AIX VMM
segments.

Data in the user data area (that is, data, bss, and heap) are shared among all
the threads that belong to the same process. On the other hand, data in the
user stack area is assigned memory individually per procedure call and is not
shared among threads (even if they are calling the same subroutine or
function). Loop iteration variables, variables for reduction operations, and
Using the SMP Feature of XL Fortran 33

temporary variables in a loop should not be shared among threads in order
for the loop to be executed correctly.

As can be seen in the /etc/xlf.cfg file, xlf_r uses -qsave by default, whereas
xlf90_r uses -qnosave. In other words, the default storage class is static when
a module is compiled with xlf_r, and automatic with xlf90_r. According to the
section on the -qsmp option in XL Fortran for AIX User’s Guide Version 5
Release 1, SC09-2606, it is recommended to use the -qnosave option to
make the default storage class automatic when a code is compiled by xlf_r
with the -qsmp option. Therefore, when you use the -qsmp compiler option,
the variables and arrays in your program are likely to be stored in the user
stack area, which was not the case when you compiled programs with xlf for
single thread execution.

Here, another complexity is introduced in 32-bit mode regarding the
maximum size of data in the user data area and the user stack area, as
explained in sections 3.3.2, “32-Bit Mode” on page 21 and 3.3.3, “32-Bit
Mode, Large Address Space Model” on page 22. For data in the user data
area, the maximum size is 256 MB (that is, the segment size of AIX) by
default, but can be extended as much as 2 GB by using the -bmaxdata
compiler option, which allows you to allocate memory across multiple
segments. For data in the user stack area, however, the maximum size per
procedure call is 256 MB and cannot go beyond the limit of AIX segment size.
Table 8 summarizes the preceding argument.

Table 8. Storage Areas and Their Maximum Sizes

User Data Area User Stack Area

Variable Type Variables in common block
Variables with SAVE attribute
(Default of xlf and xlf_r is
-qsave)
Allocatable arrays

Variables with NOSAVE
attribute (Default of xlf90 and
xlf90_r is -qnosave)

Characteristics These variables are kept static
in the user data area.

Memory area for these
variables is allocated when a
procedure is called, and will not
be retained once the procedure
ends.

Maximum size AIX default value is 128 MB.
Can be 256 MB by using the
ulimit command.
Up to 2 GB is possible by the
-bmaxdata compiler option.

AIX default value is 64 MB.
Can be 256 MB by using the
ulimit command or by the
-bmaxstack compiler option,
but no more.
34 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

Now consider the following code that requires 512 MB of memory for array A:

storage.f

PROGRAM MAIN
 PARAMETER (N=512*1024*1024/8)
 REAL*8 A(N)
 DO I=1,N
 A(I)=I
 ENDDO
 END

If this program is compiled with xlf -bmaxdata:600000000, there is no
problem in running it serial in 32-bit mode. But if storage.f is compiled with the
-qnosave option, as recommended when you use the -qsmp option, the
resulting executable cannot be executed in 32-bit mode, because the
operating system tries to store array A in the user stack area, but it has at
most 256 MB of memory available. Since in parallelizing codes, XL Fortran
divides loops into sets of disjoint iterations and allocates them to threads, the
array A can be shared among threads without interfering with each other.
Therefore, in this case, you can legitimately declare A as SAVE, which
causes A to be stored in the user data area.

storage.f (modified)

PROGRAM MAIN
 PARAMETER (N=512*1024*1024/8)
 REAL*8 A(N)

SAVE A ! The array A is stored in the user data area.
DO I=1,N

 A(I)=I
 ENDDO
 END

This code can be compiled as,

$ xlf90_r -qfixed -qsmp -bmaxdata:600000000 storage.f

or

$ xlf_r -qnosave -qsmp -bmaxdata:600000000 storage.f

and XL Fortran will automatically parallelize the DO loop and generates an
executable for multi-threaded execution. In fact, the original version of
storage.f can be compiled with the -qsave option and be executed in parallel,
in this case, because the compiler automatically generates loop iteration
variables that are local to threads.
Using the SMP Feature of XL Fortran 35

In parallel execution in 32-bit mode, you should also be careful in sizing
automatic arrays that are used in subroutines. The memory area that you
need in the user stack area for a certain subroutine is (the number of threads
executing the subroutine concurrently) x (the size of arrays).

4.3 Conditions for Automatic Parallelization

Without directives, XL Fortran only tries to parallelize DO loops. Only DO
loops with iteration variables are considered for parallelization.

Loop that will possibly be parallelized

DO I=1,N
 ...
 ENDDO

Loops that will not be parallelized

C Infinite loop
DO

 ...
 ENDDO

C DO-WHILE structure
 DO WHILE (...)
 ...
 ENDDO

C Non-DO loop
 100 CONTINUE
 ...
 GOTO 100

The compiler analyzes the loop to find out whether each iteration is
independent of one another or not, and if it turns out to have parallelism, the
compiler further estimates the benefit of parallelization by a cost-based

In 32-bit mode, the user stack area is limited by 256 MB. More user stack
area will be consumed in parallel execution than in serial because (1)
recommended storage class is NOSAVE and (2) each thread needs its own
copy of stack. Never underestimate the size needed for the user stack
area.

Important
36 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

analysis to make the final decision. The former analysis (parallelism analysis)
makes use of information that is available within the procedure that contains
the loop under consideration. There are several conditions in order for a loop
to be parallelized (the following is not a complete list):

1. Each iteration is independent of each other, that is, no variables that
are written in some iteration will be read and/or written in another
iteration.

2. The program will not exit from the loop before the last iteration is
executed.

3. There are no I/O statements in the loop.

4. There are no ALLOCATE or DEALLOCATE statements in the loop.

5. In nested loops, at most one loop can be parallelized. Therefore, a loop
in a certain nest level will not be parallelized if another level is.

More details will be discussed in 4.4, “Automatic Parallelization - Parallelism
Analysis” on page 38 by showing examples. In the remainder of this section,
general discussion on dependences between iterations are given (see
Bacon, Graham, and Sharp, “Compiler Transformations for High-Performance
Computing,” ACM Computing Surveys, Vol. 26, 1994).

There are two kinds of dependences: control dependence and data
dependence. Control dependence between statements s1 and s2 means that
s1 determines whether s2 is executed, or vice versa. The following is an
example of control dependence:

s1 IF (I>MAX) GOTO 100
s2 I=I+1

The condition 2 of the preceding list is more precisely expressed as,

2’. There are no control dependences between iterations.

Two statements have a data dependence if they cannot be executed
simultaneously due to conflicting uses of the same variable. There are three
types of data dependences: flow dependence, anti-dependence, and output
dependence. A statement s3 has a flow dependence on s4 when s3 must be
executed first because it writes a variable that is read by s4 as follows:

s3 A(I) = A(I-1) + 1.0
s4 A(I+1) = A(I) + 1.0

A statement s6 has an anti-dependence on s5 when s6 writes a variable that
is read by s5:

s5 A(I-1) = A(I) + 1.0
Using the SMP Feature of XL Fortran 37

s6 A(I) = A(I+1) + 1.0

In the preceding example, anti-dependence can be eliminated by storing the
value of A(I) to a temporary variable, say T, before the execution of s5 and s6,
and by using T instead of A(I) in s5.

Statements s7 and s8 have output dependence if both write the same
variable:

s7 T = A(I)
s8 T = A(I+1)

These three data dependences and combinations of them constitute cases
that violate the first condition. They prohibit automatic parallelization in
principle, but in some cases where dependent variables are only used
temporarily and are insignificant outside the iteration, or when you can use
directives, parallelization might be possible.

4.4 Automatic Parallelization - Parallelism Analysis

Ideally, the compiler parallelizes all the DO loops that can be parallelized at
all. During compilation, there may be a lack of sufficient information in the
code for the compiler to make an analysis, thus the compiler automatically
parallelizes loops, and in the other, it needs assistance through the use of
directives. In either cases, it is important that you know, to some extent, how
the compiler tries to analyze and transform DO loops for parallel execution.

4.4.1 Examples of Parallelism Analysis
Subsections from 4.4.1.1, “Loops That Have Parallelism” on page 38 through
4.4.1.10, “Dynamic Allocations, and Pointer Substitutions” on page 44 show
how structures in DO loops allow or disallow the compiler to parallelize them.
Note that some of the examples might have too few iterations to pass the
cost-based analysis following the parallelism analysis, but they are for
explanation purposes only and loops that are automatically parallelized
usually have more than the minimum number of iterations in their cases.

4.4.1.1 Loops That Have Parallelism
Each iteration in the following loop is independent of each other and can be
parallelized automatically. By declaration of A and B, you (and the compiler)
know that these two array do not overlap in memory, that is, no equivalence
relation between any elements of A and B.

REAL*8 A(100), B(100)
DO I=1,100
38 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

 A(I)=B(I)
 ENDDO

If this loop is to be executed concurrently by two threads, each thread should
execute half of the whole iterations:

Thread 0

DO I0=1,50
 A(I0)=B(I0)
 ENDDO

Thread 1

DO I1=51,100
 A(I1)=B(I1)
 ENDDO

As mentioned in 4.2, “Consideration of Storage Classes in 32-Bit Mode” on
page 33, the compiler takes care of the loop iteration variable regardless of
whether it is static (SAVE) or automatic (NOSAVE). In the preceding example,
symbolic names (I0 and I1) are used for non-shared thread-local loop iteration
variables, but you can guess how the compiler actually translates this loop by
looking into hotlist report as follows. (The line continuation is modified for
readability.)

subroutine ___main_out_1(__lib_ctl_1,
 & __do_from_1,
 & __do_to_1,
 & __do_step_1,a_1,b_1,i_1,CLLIV_4_1)
 integer*4 :: __lib_ctl_1
 integer*4 :: __do_from_1
 integer*4 :: __do_to_1
 integer*4 :: __do_step_1
 real*8 :: a_1(1:100)
 real*8 :: b_1(1:100)
 integer*4 :: i_1
 integer*4 :: CLLIV_4_1
 integer*4 :: local_i_1
 integer*4 :: local_CLLIV_4_1
 integer*4 :: __pardo_from_1
 integer*4 :: __pardo_to_1
 integer*4 :: __pardo_step_1
 integer*4 :: _do_executed_T_15
 local_CLLIV_4_1 = CLLIV_4_1
 local_i_1 = i_1
C 1585-501 Original Source Line 2
 do while (_xlsmpParDoChunk(__lib_ctl_1,
 & __pardo_from_1,
 & __pardo_to_1,
 & __pardo_step_1) .eq. 1)

_do_executed_T_15 = 0
 do local_CLLIV_4_1=__pardo_from_1,__pardo_to_1,__pardo_step_1
 _do_executed_T_15 = 1
 local_i_1 = local_CLLIV_4_1
 a_1(local_i_1) = b_1(local_i_1)
Using the SMP Feature of XL Fortran 39

 end do
 local_CLLIV_4_1 = local_CLLIV_4_1 - __pardo_step_1 + __do_step_1
 if ((_do_executed_T_15 .eq. 1 .and.
 & (__do_step_1 .gt. 0 .and. local_CLLIV_4_1 .gt. __do_to_1
 & .or.
 & __do_step_1 .lt. 0 .and. local_CLLIV_4_1 .lt. __do_to_1)
 & .and. (1)) .ne. 0) then
 i_1 = local_i_1
 CLLIV_4_1 = local_CLLIV_4_1
 end if
 end do
 return
 end

This hotlist report is generated with the -qsave option and it shows that the
DO loop is converted into a subroutine so that each thread can execute its
own assignment and that a loop iteration variable local_i_1 which is local to
thread, is used to avoid shared access by threads.

By default, loops are divided into a set of iterations in a block scheduling
fashion, but you can choose cyclic scheduling, block-cyclic scheduling, or
dynamic scheduling by specifying SCHEDULE directive, which will be
explained in section 4.6.4, “SCHEDULE Compiler Directive” on page 54.

4.4.1.2 Loops That Have Flow Dependence
The following loop will not be parallelized because it has flow dependence:

DO I=2,N
 A(I)=A(I-1)+B(I)
 ENDDO

When the loop is unrolled iteration by iteration, you can see the difficulty in
parallelization:

A(2)=A(1)+B(2) (iteration 2)
A(3)=A(2)+B(3) (iteration 3)
A(4)=A(3)+B(4) (iteration 4)
A(5)=A(4)+B(5) (iteration 5)
...

The variable A(3), for instance, is updated in the iteration 3 and this updated
value is used in the iteration 4. This is a true recursive. Therefore the
iterations 3 and 4 must be executed in this order and cannot be exchanged
nor be executed concurrently. This is why loops with flow dependence cannot
be parallelized automatically, but the preceding discussion has some
suggestions in parallelizing them manually: suppose iterations 2 and 3 are
assigned to thread 0 and 4 and 5 to thread 1. In this case, threads 0 and 1
can be executed concurrently if thread 1 uses the value of A(3) written by
thread 0, that is, it is the variables on the boundary between threads that
matter in parallelization, and you can get rid of this dependence by using the
40 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

same technique as prefix sum. In section 4.7, “NUM_PARTHDS Intrinsic
Function” on page 56, you will see how to parallelize this loop using
NUM_PARTHDS intrinsic function.

4.4.1.3 Loops That Have Anti-Dependence
Loops with anti-dependence also prevent the compiler from parallelization:

DO I=1,N-1
 A(I)=A(I+1)+B(I)
 ENDDO

Again, for the purpose of illustrative understanding of the loop structure, the
first few iterations are written down explicitly:

A(1)=A(2)+B(1) (iteration 1)
A(2)=A(3)+B(2) (iteration 2)
A(3)=A(4)+B(3) (iteration 3)
A(4)=A(5)+B(4) (iteration 4)
...

It is easy to see that these iterations cannot be executed concurrently.
Although it might not be beneficial in a performance point of view, it is
possible to parallelize the loop manually by using a temporary array:

DO I=1,N-1
 T(I)=A(I+1)
 ENDDO

DO I=1,N-1
 A(I)=T(I)+B(I)
 ENDDO

4.4.1.4 Temporary Variables
Temporary variables that appear in a loop can impose both anti-dependence
and output dependence on the loop:

DO I=1,N
 T = B(I)

A(I) = T
ENDDO

In the following, dependence is considered not in terms of statement but in
terms of iteration, which is suitable for discussing loop parallelization. Look at
iterations I and I+1. (Subscripts for Ts are for explanation purpose only.)

T1 = B(I) (iteration I)
A(I) = T2
T3 = B(I+1) (iteration I+1)
A(I+1) = T4
Using the SMP Feature of XL Fortran 41

Iteration I has anti-dependence on I+1 because of T2 and T3. At the same
time, both iterations have output dependence since they write to the same
variable (T1 and T3). By preparing two variables, one for T1 and T2, the other
for T3 and T4, the dependences can be eliminated because statements in
each iteration is assured to be executed in order. In this simple case, the
compiler automatically parallelizes the loop by providing local temporary
variables for each thread regardless of whether T is static (SAVE) or
automatic (NOSAVE). If the value of T is referred after the loop, the compiler
makes sure that the variable T holds the same value as when the loop is
executed serially. Suppose a loop with temporary variables is not parallelized
automatically and you force the compiler to parallelize it. Depending on
whether these temporary variables are referred to after the loop, there are
two clauses to the PARALLEL DO directive, namely PRIVATE and
LASTPRIVATE, which will be explained in section 4.6.1.1, “PRIVATE and
LASTPRIVATE” on page 51.

4.4.1.5 Conditions
The following loop will not be parallelized because the first occurrence of I
such that IFLAG(I) equals 1 affects the remaining iterations:

T=0.0
 DO I=1,N
 IF (IFLAG(I)==1) T=1.0

A(I)=T
 ENDDO

On the other hand, the compiler automatically parallelizes the following:

DO I=1,N
 IF (IFLAG(I)==1) THEN
 T=1.0
 ELSE
 T=0.0
 ENDIF
 A(I)=T
 ENDDO

In the current implementation of XL Fortran 5.1.1, dependence between
iterations including IF statements must be observable to the compiler
syntactically, not semantically, for automatic parallelization. For instance, the
following code is not parallelized:

DO I=1,N
 IF (IFLAG(I)==1) T=1.0
 IF (IFLAG(I)/=1) T=0.0
 A(I)=T
 ENDDO
42 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

Future IBM implementations of XL Fortran might behave in a different
manner.

4.4.1.6 Reduction Operations
XL Fortran automatically parallelizes the following code if the -O3 option is
set. Obviously, there are flow dependence and output dependence between
iterations in reduction operations, but the compiler transforms the loop for
parallel execution.

S=0.0
 DO I=1,N
 S=S+A(I)
 ENDDO

The additional compiler flag -qstrict will prevent parallelization of the
preceding loop. In concurrent execution, threads calculate the subtotal of
array A, and those subtotals are added to produce the total. The order of
summation could be different from what it will be if the loop is executed
serially; thus the option -qstrict must not be set for parallelization. Indeed the
results could be different from execution to execution within numerical error
depending on the order in which subtotals are added up. In 4.6.1.2,
“REDUCTION” on page 52, a method is presented to force the compiler to
parallelize the reduction operation. The following shows examples of
reduction operations that can be parallelized:

 • Scalar = scalar op expression

S = S + A(I)
S = S * A(I)
S = S + A(I)*B(I)

 • Scalar = func(scalar, expression)

AMAX = MAX(AMAX, A(I))
AMIN = MIN(AMIN, A(I))

4.4.1.7 Indirect Addressing
The compiler does not parallelize the following loop because it cannot
determine whether there is an output dependence or not:

DO I=1,N
 A(INDEX(I))=B(I)
 ENDDO

If there exist J and K such that , , and INDEX(J)=INDEX(K),
the loop has indeed an output dependence. If you know that it is not the case,
you can tell the compiler of this fact by giving the PERMUTATION directive
(Section 4.6.3, “PERMUTATION Compiler Directive” on page 54).

1 J K N≤,≤ J K≠
Using the SMP Feature of XL Fortran 43

4.4.1.8 Subroutine Calls
The compiler does not automatically parallelize a loop containing subroutine
calls and/or function calls. In the smplist report, the compiler outputs
messages as follows:

C 1585-108 SMP: Did not parallelize this loop potentially because:
C 1585-111 Side effects of procedure call(s) cannot be determined.

It is your responsibility whether to parallelize the loop with directives, such as
PARALLEL DO and CNCALL, or not.

4.4.1.9 I/O Operations
The compiler does not parallelize a loop having I/O statements.

4.4.1.10 Dynamic Allocations, and Pointer Substitutions
The compiler does not parallelize the following loops:

loop 1

 REAL, ALLOCATABLE :: A(:)
 DO I=1,100
 ALLOCATE(A(1000))
 ...
 DEALLOCATE(A)
 ENDDO

loop 2

 POINTER P
 TARGET A(100)
 DO I=1,100
 P=>A(I)
 ...
 ENDDO

4.4.2 XL Fortran Messages Related to Parallelization
There are several messages that the compiler outputs regarding
parallelization when a source code is compiled with the -qreport=smplist
option. When a DO loop is automatically parallelized, you will see a listing like
the following:

PARALLEL DO I=1,100,1
 A(I) = B(I)

END DO
44 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

On the other hand, if the compiler fails in automatic parallelization, it puts
messages before the loop; this accounts for the reason why the loop was not
parallelized.

C 1585-108 SMP: Did not parallelize this loop potentially because:
C 1585-113 Data dependence prevents parallelization.

DO I=2,100,1
 ScRep_3 = A(I - 1) + B(I)

A(I) = ScRep_3
END DO

The first message 1585-108 SMP: Did not parallelize this loop potentially
because: is common and a detail reason is given in the following message(s).
The whole list is listed as follows:

 • 1585-109 Granularity of computation is relatively small.

 • 1585-110 Loop has loop carried control dependence.

 • 1585-111 Side effects of procedure call(s) cannot be determined.

 • 1585-112 Dependence information is not precise.

 • 1585-113 Data dependence prevents parallelization.

 • 1585-114 Parallelization may result in poor cache locality.

 • 1585-115 Loop nest needs to be serial for better cache locality.

Messages from 1585-110 to 1585-113 show that the loop was not parallelized
by parallelism analysis and the others show that the compiler decided not to
parallelize it by cost-based analysis, which is explained in 4.5, “Automatic
Parallelization - Cost-Based Analysis” on page 45.

4.5 Automatic Parallelization - Cost-Based Analysis

Even if the parallelism analysis found that a DO loop could be executed in
parallel, that DO loop must pass cost-based analysis in order to be
parallelized. The logic of cost-based analysis is not documented in manuals,
but obviously, it takes into consideration cache locality (that is, stride) and
granularity of work assigned to each thread. What is described in the
following sections is based on experiments run on XL Fortran Version 5.1.1
and is subject to change in any future release of XL Fortran or service
update.

4.5.1 Cost-Based Analysis - Single Loops
In the cost-based analysis, the compiler primarily takes into account the
number of iterations of DO loops:
Using the SMP Feature of XL Fortran 45

SUBROUTINE SUB1(A,MAX)
PARAMETER (N=10)

 DIMENSION A(MAX)
 DO I=1,N
 A(I)=I
 ENDDO
 END

 SUBROUTINE SUB2(A,IMAX)
 DIMENSION A(10)
 DO I=1,IMAX
 A(I)=I
 ENDDO
 END

In subroutine SUB1, the number of iterations is explicitly given within the
subroutine because variables defined by PARAMETER statements are
replaced by actual values. In subroutine SUB2, the value of IMAX is unknown
but the compiler assumes that it is the same as the dimension of A, that is,
10.

The compiler parallelizes an unnested DO loop when the number of iterations
is unknown, or is greater than or equal to a certain threshold value. Otherwise
the loop is not parallelized and smplist reports the reason as C 1585-109
Granularity of computation is relatively small. The default threshold value
is 100 in XL Fortran 5.1.1.

4.5.2 Cost-Based Analysis - Nested Loops
In case of nested loops, the compiler decides to parallelize them, or not,
based on the numbers of iterations of all nested levels. Examine the double
loops first. In the loop below, whether it is parallelized or not depends on both
JMAX and IMAX:

DO J=1,JMAX
 DO I=1,IMAX
 A(I,J)=B(I,J)
 ENDDO
 ENDDO

In this simple example, it is always the outer loop that is parallelized, if the
nested loop is parallelized at all. If the outer loop has no parallelism and the
inner one does, the compiler tries to parallelize the inner loop according to
the same criteria for single loops:

DO J=1,JMAX ! Not parallelized
 CALL SUB
46 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

 DO I=1,IMAX ! Might be parallelized
 A(I,J)=B(I,J)
 ENDDO
 ENDDO

For loops with more than two levels, the same argument applies except that
the compiler may possibly change the order of loops. For instance, a nested
loop:

DO K=1,4
 DO J=1,1000
 DO I=1,1000
 A(I,J,K)=B(I,J,K)
 ENDDO
 ENDDO
 ENDDO

is parallelized as follows:

DO J=1,1000 ! Parallelized
 DO K=1,4 ! Not parallelized
 DO I=1,1000 ! Not parallelized
 A(I,J,K)=B(I,J,K)
 ENDDO
 ENDDO
 ENDDO

Note that loop J and loop K are exchanged.

4.5.3 How to Affect the Decision of Cost-Based Analysis
XL Fortran estimates the benefit of parallelization according to its own logic,
which is not always ideal. There are cases where DO loops are not
parallelized while they should be, or DO loops are parallelized even if the
performance degrades. In this section, some techniques are presented for
changing how the compiler estimates loops.

As described in 4.5.1, “Cost-Based Analysis - Single Loops” on page 45 and
4.5.2, “Cost-Based Analysis - Nested Loops” on page 46, the information that
the compiler uses in cost-based analysis is the number of iterations of loops.
Therefore, if the compiler presumed the value that you wish for the number of
iteration of some loop, the compiler would behave as you wish regarding
parallelization of the loop. For that purpose, there is a directive called
ASSERT(ITERCNT(N)) that tells the compiler to use n in the evaluation of the
number of iterations of the loop immediately following the directive. Since the
value of n is used only in the cost-based analysis, you can specify a different
Using the SMP Feature of XL Fortran 47

number from the one that the loop actually iterates. The following are
examples of how to use this directive.

The DO loop in the following subroutine is parallelized because the value of N
is unknown:

SUBROUTINE SUB(A,N)
 DIMENSION A(N)
 DO I=1,N ! Parallelized
 A(I)=0.0
 ENDDO
 END

If you know that the value of N is small and that parallelization will degrade
the performance, you can give the compiler a small value and serialize the
loop, or you can force the compiler to serialize the loop by the DO SERIAL
directive:

SUBROUTINE SUB(A,N)
 DIMENSION A(N)
!SMP$ ASSERT(ITERCNT(1)) ! DO SERIAL also works
 DO I=1,N ! Not parallelized
 A(I)=0.0
 ENDDO
 END

Even if the number of iterations is explicitly given in the code, the directive
can be used. The following is a case where for some reason you parallelize a
loop against compiler’s decision:

SUBROUTINE SUB(A,N)
 DIMENSION A(N)
!SMP$ ASSERT(ITERCNT(1000))
 DO I=1,10 ! Parallelized
 A(I)=0.0
 ENDDO
 END

But in the current implementation of XL Fortran, if the compiler knows that the
size of an array is below threshold value, it neglects the directive:

SUBROUTINE SUB(A)
 DIMENSION A(10)
!SMP$ ASSERT(ITERCNT(1000))
 DO I=1,10 ! Not parallelized
 A(I)=0.0
 ENDDO
 END
48 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

In parallelizing nested loops, you may have to write an ASSERT directive for
a loop which is not the one you want to parallelize:

SUBROUTINE SUB(A)
 DIMENSION A(2,1000)
 DO K=1,1000 ! Not parallelized (but should be)
 DO J=1,2 ! Not parallelized
 A(J,K)=0.0
 ENDDO
 ENDDO
 END

It is the few iteration of J that prevents the compiler from parallelizing K’s loop:

SUBROUTINE SUB(A,N)
 DIMENSION A(N,1000)
 DO J=1,1000 ! Parallelized
!SMP$ ASSERT(ITERCNT(1000))
 DO I=1,2 ! Not parallelized
 A(I,J)=0.0
 ENDDO
 ENDDO
 END

Note that you need to hide A’s first dimension size from the compiler in order
for the directive to work.

There is a trick that does not use ASSERT directive. Suppose that you want
to parallelize the inner loop in the following subroutine:

SUBROUTINE SUB(A,M,N)
 DIMENSION A(M,N)
 DO J=1,4 ! Not parallelized
 DO I=1,1000 ! Not parallelized
 A(I,J)=0.0
 ENDDO
 ENDDO
 END

As mentioned in 4.5.2, “Cost-Based Analysis - Nested Loops” on page 46, if
the outer loop does not have parallelism, the compiler tries to parallelize the
inner one:

SUBROUTINE SUB(A,M,N)
 DIMENSION A(M,N)
 DO J=1,4 ! Not parallelized
 CALL DUMMY
 DO I=1,1000 ! Parallelized
 A(I,J)=0.0
Using the SMP Feature of XL Fortran 49

 ENDDO
 ENDDO
 END

 SUBROUTINE DUMMY
 END

A dummy subroutine call prevents the automatic parallelization (Section
4.4.1.8, “Subroutine Calls” on page 44) and the inner loop is parallelized as
desired.

If you use the PARALLEL DO directive, you can also parallelize a specific
loop that you want. But there is a considerable difference between ASSERT
and PARALLEL DO: ASSERT is an assertion directive, that is, it is still up to
the compiler whether to parallelize the loop or not. On the other hand,
PARALLEL DO is a prescriptive directive that forces the compiler to
parallelize the loop regardless of parallelism and cost-based analyses, and it
is you who has to take care of variables (other than loop iteration variables) in
the loop with appropriate clauses, such as PRIVATE and REDUCTION.

4.6 Directives

When XL Fortran does not parallelize a certain part of a code, you can force
or give a hint to the compiler to parallelize that part by using directives.
Directives related to parallelization are classified into three categories. The
asterisks indicate directives that are described in the following sections.

1. Assertion directives that provide information to the compiler about the
source code that the compiler would not necessarily be able to determine
on its own:

 • ASSERT

 • CNCALL

 • INDEPENDENT

 • PERMUTATION*

2. Prescriptive directives that specify how and when the compiler should
parallelize the code:

 • CRITICAL

 • PARALLEL DO*

 • PARALLEL SECTIONS*

 • SCHEDULE*
50 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

 • DO SERIAL

3. Thread-safing directive that allocates thread-specific COMMON areas at
run time:

 • THREADLOCAL*

Directives are triggered by !SMP$, !$OMP, !IBM*, or others by default, but
!SMP$ is used throughout the chapter. The next several sections describe the
directives that are considered to be used most frequently in parallelizing real
codes. For complete reference of all the directives, see Chapter 11 of XL
Fortran for AIX Language Reference Version 5 Release 1, SC09-2607.

4.6.1 PARALLEL DO Compiler Directive
When you know that no iteration of a DO loop can interfere with any other
iteration and the compiler fails to parallelize the loop automatically, you can
specify a PARALLEL DO directive to parallelize the loop. In real codes, it is
often the case that it is not enough to write a PARALLEL DO directive alone.
In addition to the PARALLEL DO directive a, PARALLEL DO clause, such as
PRIVATE or REDUCTION, might be necessary. In this section, parallelization
of DO loops having subroutine calls and/or function calls is not described.

The following subsections describe PARALLEL DO clauses.

4.6.1.1 PRIVATE and LASTPRIVATE
A variable should be specified with the PRIVATE attribute, if its value is used
during the calculation of a single iteration of a loop, and that value is not
dependent on any other iteration of the loop. Copies of the PRIVATE variable
exist locally on each thread. All DO loop iteration variables within the lexical
extent of the PARALLEL DO directive are given the PRIVATE attribute by
default. (The lexical extent of a PARALLEL DO directive includes the
corresponding DO loop and the code that is enclosed in that DO loop.) The
following is an example where you force the compiler to parallelize a DO loop
for some reason, although the compiler automatically parallelizes this simple
case without directives:

!SMP$ PARALLEL DO PRIVATE(P,Q)
 DO I=1,N
 P=A(I)
 Q=B(I)
 C(I)=P
 D(I)=Q
 ENDDO

A variable in the PRIVATE clause must not:
Using the SMP Feature of XL Fortran 51

 • Be a pointer, or

 • Be an assumed-size array, or

 • Be an assumed-shape array, or

 • Be a THREADLOCAL common block variable.

The LASTPRIVATE clause functions in a similar manner to the PRIVATE
clause and should be specified for variables that match the same criteria. The
exception is the status of the variable upon exit from the loop. The compiler
determines the value of the variable at the final iteration and takes a copy of
that value. The copy of the value is then saved in the named variable for use
after the loop.

4.6.1.2 REDUCTION
The REDUCTION clause specifies named variables that appear in reduction
operations. The compiler will maintain local copies of such variables, but will
combine them at loop exit. The intermediate values of the REDUCTION
variables are combined in random order, dependent on which threads finish
their calculation first. There is, therefore, no guarantee that bit-identical
results will be obtained from one parallel run to another, even if the parallel
runs use the same number of threads and the same scheduling type and
chunk size. The syntax of REDUCTION clause is

REDUCTION([op_fnc :] named_variable_list)

where op_fnc is one of the reduction operators: +, -, *, .AND., .OR., .EQV.,
.NEQV., .XOR. or one of the reduction functions: MAX, MIN, IAND, IOR,
IEOR. In order to maintain compatibility with OpenMP, op_fnc must be
specified when the directive is triggered by $OMP. The following is an
example:

!SMP$ PARALLEL DO REDUCTION(+:S1,S2),
!SMP$& REDUCTION(MAX:CMAX)
 DO I=1,N
 S1=S1+A(I)
 S2=S2+B(I)
 CMAX=MAX(CMAX,C(I))
 ENDDO

In the following loop, it is the outer loop that is parallelized, and you need to
declare S as PRIVATE rather than REDUCTION:

!SMP$ PARALLEL DO PRIVATE(S)
 DO J=1,N ! Parallelized
 S=0.0
 DO I=1,N ! Not parallelized
52 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

 S=S+A(I,J)
 ENDDO
 B(J)=S
 ENDDO

4.6.1.3 IF
The IF clause performs a run time test to choose between executing the loop
in serial or parallel:

!SMP$ PARALLEL DO IF(N>1000)
 DO I=1,N
 A(I)=0.0
 ENDDO

4.6.1.4 SCHEDULE
The SCHEDULE clause in a PARALLEL DO directive specifies the chunking
method for parallelization of the DO loop immediately following it, whereas a
directive starting with SCHEDULE applies to all loops in the scoping unit that
do not already have explicit scheduling types specified. Section 4.6.4,
“SCHEDULE Compiler Directive” on page 54, describes types that you can
choose in the SCHEDULE directive.

4.6.2 PARALLEL SECTIONS Compiler Directive
The PARALLEL SECTIONS directive is used to define independent blocks of
code that the compiler can execute concurrently. In using this directive, you
have to keep in mind the following:

 • The larger the granularity of the independent blocks is, the smaller the
relative overhead of parallel execution will be.

 • On the other hand, if the granularity of the independent blocks is large,
the assigned work for each thread will likely be unbalanced, in general.

 • The number of sections is given statically in the code. That is, the
number of threads for parallel execution of this part of the code is no
more than the number of sections, unless the prescriptive parallel
construct (PARALLEL SECTIONS or PARALLEL DO) is nested and you
compiled the program with -qsmp=nested_par option. Of course, in
either case, the number of threads cannot exceed the value of parthds
run-time option. See 4.1, “How to Compile, Link, and Execute” on page
29 for parthds.

The following is a simple example of the PARALLEL SECTIONS directive:

!SMP$ PARALLEL SECTIONS
!SMP$ SECTION
Using the SMP Feature of XL Fortran 53

 CALL SUB1
!SMP$ SECTION
 CALL SUB2
!SMP$ END PARALLEL SECTIONS

If necessary, you must add the appropriate clause to the PARALLEL
SECTIONS directive, such as PRIVATE and SHARED. For details, see XL
Fortran for AIX Language Reference Version 5 Release1, SC09-2607.

4.6.3 PERMUTATION Compiler Directive
As mentioned in section 4.4.1.7, “Indirect Addressing” on page 43, indirect
addressing of array elements prevents the compiler to parallelize the loop
containing it. If you know that there are no repeated values in the array used
for addressing, you can tell the compiler of that information by using the
PERMUTATION directive:

!SMP$ PERMUTATION(INDEX)
DO I=1,N ! Parallelized

 A(INDEX(I))=A(INDEX(I))+B(I)
 ENDDO

4.6.4 SCHEDULE Compiler Directive
The SCHEDULE directive specifies how the iterations of a DO loop are
divided and assigned to threads. The syntax for the SCHEDULE directive is
as follows:

SCHEDULE(sched_type [, n])

where n is an integer and sched_type is one of AFFINITY, DYNAMIC,
GUIDED, RUNTIME, or STATIC. When using RUNTIME, n must not be
specified. The following shows how each scheduling policy assigns iterations
to threads for the case where the number of iterations is 1000 and the
number of threads is four:

STATIC If n has been specified, say n=50, the iterations of a loop are
divided into chunks containing 50 iterations. Each thread is
assigned chunks in a round-robin fashion. This is known as
block cyclic scheduling. If the value of n is 1, then the
scheduling type is specifically referred to as cyclic
scheduling.
If n has not been specified, the iteration is divided into four
chunks containing 1000/4=250 iterations and each thread is
assigned one of these chunks. This is known as block
scheduling.
54 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

DYNAMIC If n has been specified, say n=50, the iterations of a loop are
divided into chunks containing 50 iterations each.
Otherwise, the chunk size will be 1000/4=250. Threads are
assigned these chunks on a first-come, first-do basis until all
chunks have been assigned.

GUIDED If n has been specified, the iterations of a loop are divided
into progressively smaller chunks until a minimum chunk
size of n loop iteration is reached. If n has not been
specified, the default value for n is 1 iteration. The first
chunk contains 1000/4=250 iterations. The subsequent
chunks contain (1000-250)/4=750/4=188 iterations,
(750-188)/4=562/4=141 iterations, (562-141)/4=106
iterations, and so forth. Available threads are assigned
chunks on a first-come, first-do basis. Chunks of the
remaining work are assigned to available threads, until all
work has been assigned.

AFFINITY The iterations of a loop are initially divided into four
partitions containing 1000/4=250 iterations. Each partition is
initially assigned to a thread, and is then further subdivided
into chunks containing n iterations, if n has been specified.
Otherwise, each partition is subdivided into two chunks.
When a thread becomes free, it takes the next chunk from
its initially assigned partition. If there are no more chunks in
that partition, the thread takes the next available chunk from
a partition initially assigned to another thread.

RUNTIME Determine the scheduling type at run time. At run time, the
scheduling type can be specified using the environment
variable XLSMPOPTS. If no scheduling type is specified by
XLSMPOPTS, STATIC is used as default.

If you specify more than one method of determining the scheduling type, the
compiler will follow in the order of precedence:

1. SCHEDULE clause of the PARALLEL DO directive (for example,
!SMP$ PARALLEL DO SCHEDULE(STATIC,1))

2. SCHEDULE directive (for example, !SMP$ SCHEDULE(STATIC,1))

3. The schedule suboption to the -qsmp compiler option (for example,
-qsmp=schedule=static=1)

4. XLSMPOPTS run-time option (for example,
XLSMPOPTS=schedule=static=1)

5. Run-time default, that is, STATIC
Using the SMP Feature of XL Fortran 55

4.6.5 THREADLOCAL Compiler Directive
In general, data in a COMMON block is shared among all the threads that
belong to the same process. The THREADLOCAL directive is used to ensure
that a COMMON block is local to each thread but is global within the thread. If
a common block is declared as THREADLOCAL within a scoping unit, any
subprogram that declares or references the common block, and that is
directly or indirectly referenced by the scoping unit, must be executed by the
same thread executing the scoping unit.

4.7 NUM_PARTHDS Intrinsic Function

The NUM_PARTHDS intrinsic function returns the number of parallel Fortran
threads at run time. With this function and the PARALLEL DO directive, you
can determine how the work is divided to threads, which gives more flexibility
to you than the SCHEDULE directive does. In this section, an example is
given that shows how NUM_PARTHDS is used in parallelizing a loop having
flow dependence.

The following subroutine cannot be parallelized because it has flow
dependence (see Section 4.4.1.2, “Loops That Have Flow Dependence” on
page 40):

SUBROUTINE SUB(A,B,N)
 DIMENSION A(0:N),B(N)

 DO I=1,N
 A(I)=A(I-1)+B(I)
 ENDDO
 END

When the loop exits, the array A has the following values:

A(1)=A(0)+B(1)
 A(2)=A(0)+B(1)+B(2)
 A(3)=A(0)+B(1)+B(2)+B(3)
 ...
 A(N)=A(0)+B(1)+B(2)+B(3)+...+B(N)

The idea in parallelizing this loop is as follows:
56 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

1. Divide the array B into chunks,

2. Let each thread calculate the subtotal of its assigned chunk, and

3. Calculate the array A in parallel.

The manually parallelized code is as follows:

SUBROUTINE PSUB(A,B,N)
 DIMENSION A(0:N),B(N)
 INTEGER,ALLOCATABLE :: ISTA(:),IEND(:)

 NTHDS=NUM_PARTHDS()
 ALLOCATE(ISTA(0:NTHDS-1),IEND(0:NTHDS-1))
 CALL PARA_RANGE(1,N,NTHDS,ISTA,IEND)

!SMP$ PARALLEL DO PRIVATE(S)
 DO ID=0,NTHDS-1 ! Parallelized
 S=0.0
 DO I=ISTA(ID),IEND(ID)
 S=S+B(I)
 ENDDO
 A(IEND(ID))=S
 ENDDO
 DO ID=0,NTHDS-1 ! Serial
 A(IEND(ID))=A(IEND(ID))+A(ISTA(ID)-1)
 ENDDO
!SMP$ PARALLEL DO
 DO ID=0,NTHDS-1 ! Parallelized
 DO I=ISTA(ID),IEND(ID)-1
 A(I)=A(I-1)+B(I)

ENDDO
 ENDDO
 END

The existence of a subroutine PARA_RANGE is assumed, which, in this case,
assigns integers from 1 to N to NTHDS threads in block scheduling fashion and
stores the initial and the final values of each chunk to arrays ISTA and IEND.
Roughly speaking, the running time in the unit of addition is N for serial and is
p+2N/p for parallel where p is the number of threads.

4.8 XLSMPOPTS Environment Variable

The XLSMPOPTS environment variable specifies run-time options related to
parallel execution. Section 4.1, “How to Compile, Link, and Execute” on page
29 describes the parthds option, which specifies the number of threads to be
used for parallel execution of the code, and its default value is the number of
Using the SMP Feature of XL Fortran 57

on-line processors. For instance, if you want to execute your program using
four threads, set this environment variable as follows:

$ export XLSMPOPTS=parthds=4

Section 4.6.4, “SCHEDULE Compiler Directive” on page 54 also mentions the
schedule option, which takes one of the following forms:

$ export XLSMPOPTS=schedule=affinity[=n]
$ export XLSMPOPTS=schedule=dynamic[=n]
$ export XLSMPOPTS=schedule=guided[=n]
$ export XLSMPOPTS=schedule=static[=n]

When you need multiple options, separate each option by a colon:

$ export XLSMPOPTS="parthds=4:schedule=static"

In addition, there are three options (spins, yields, and delays) that control
busy-wait and sleep states of XL Fortran run-time library routines. In
execution, each thread tries to look for its work in the following steps:

1. Scan the work queue up to spins number of times. If no work is found in
a scan, then loop delays number of times before starting a new scan.

2. If work has not been found, then yield the current time slice.

3. Repeat the above steps up to yields number of times.

4. If no work has been found, then go to sleep.

The syntax for specifying these options is as follows.

 • spins=n where n is the number of spins before a yield (default: spins=100)

 • delays=n where n is the number of delays while busy-waiting (default:
delays=500)

 • yields=n where n is the number of yields before a sleep (default:
yields=10)

By setting spins=0 and yields=0, you can force complete busy-waiting,
sacrificing other processes’ CPU time. Normally in a benchmark test on a
dedicated system, both of these options would be zero, but note that
complete busy-waiting does not always improve the performance.

4.9 OpenMP Porting Considerations

The OpenMP initiative was launched in 1997 in order to provide a simple and
flexible application program interface (API) for developing portable
multi-platform shared-memory parallel applications on UNIX platforms and
58 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

Microsoft Windows NT architectures. At the time of writing, the OpenMP
Fortran API specification Version 1.0 is available. A C/C++ API is under
development. For further details refer to URL http://www.openmp.org. IBM is
part of a multi-company initiative supporting this standard.

The current release 5.1.1.0 of XL Fortran provides a subset of the OpenMP. A
complete OpenMP implementation is expected with future releases of XLF,
driven by the ASCI project. XLF also offers an interface to the pthread library,
which does help to cover certain OpenMP function when porting codes to the
RS/6000 platform. This section will give some hints concerning differences
between XLF and OpenMP and the usage of the pthread library module in
this context.

In particular, XLF has partial support for the CRITICAL, END CRITICAL,
PARALLEL DO, PARALLEL SECTIONS, SECTION, and END PARALLEL
SECTIONS directives. To ensure the greatest portability of code, it is
recommended to use these directives whenever possible. These directives
should be used with the OpenMP directive sentinel !$OMP. SMP directives
are recognized by the compiler if either xlf_r or xlf90_r is used and the -qsmp
option is specified.

XLF does not recognize the OpenMP conditional compilation, for example,
triggered by the directive sentinel !$. Nor does XLF define the C preprocessor
macro _OPENMP to be used for conditional compilation (see #ifdef
_OPENMP). If appropriate _OPENMP can be defined through the compiler
command line flag -WF,-D_OPENMP.

XLF does not provide the OpenMP END PARALLEL DO directive. This is a
minor difference since the PARALLEL DO is assumed to end with the DO
loop that immediately follows the PARALLEL DO in OpenMP as well.

For explicit process synchronization, XLF relies on CRITICAL and END
CRITICAL directives. Besides, there is an implied barrier at the end of a
parallel region, since only the master thread continues execution. The
PARALLEL DO and PARALLEL SECTIONS directives are shortcuts of the
OpenMP PARALLEL REGION construct, which is not available in XLF. In
particular, no OpenMP BARRIER directive is available. The BARRIER
directive can be substituted by a common pthread construct, as shown in the
example program at the end of this section.

The XLF THREADLOCAL directive makes named common blocks private to a
thread but global within a thread. It is a possible method of ensuring that
access to data contained within COMMON blocks is serialized. Threads can
be created in one of the following ways: explicitly through pthread library calls
Using the SMP Feature of XL Fortran 59

or implicitly by the compiler for parallel loop or parallel section execution. The
THREADLOCAL directive does not require the -qsmp compiler option.

The semantics of the XLF THREADLOCAL directive slightly differs from the
OpenMP THREADPRIVATE directive. The THREADLOCAL attribute is not
allowed in a pure subprogram. Members of a THREADLOCAL common block
must not appear in NAMELIST statements. A common block that is
use-associative must not be declared as THREADLOCAL in the scoping unit
that contains the USE statement. A THREADLOCAL common block may
have the SAVE attribute. In OpenMP, the data in THREADPRIVATE common
blocks is guaranteed to persist only if the OpenMP dynamic thread
mechanism has been disabled and if the number of threads is the same for all
parallel regions.

For clarification, objects within THREADLOCAL common blocks may be used
in parallel loops and parallel sections. However, these objects are implicitly
shared across the iteration of the loop and across code blocks within parallel
sections. In other words, within a scoping unit, all accessible common blocks,
whether declared as THREADLOCAL or not, have the SHARED attribute
within parallel loops and sections in that scoping unit.

XLF 5.1.1.0 does not support the OpenMP Execution Environment Routines,
such as OMP_SET_NUM_THREADS(), OMP_GET_NUM_PROCS(),
OMP_SET_DYNAMIC(), nor the OpenMP Lock Routines, such as
OMP_SET_LOCK(). As a substitute, the programmer can use the XLF
intrinsic functions NUM_PARTHDS() and NUM_USRTHDS() to inquire the
run-time environment, and the pthread mutex constructs to create and
destroy locks.

The function NUM_PARTHDS() returns the number of parallel Fortran
threads the run time should create during execution of a program. This value
is set by using XLSMPOPTS PARTHDS run-time option. If not set the
run-time environment will return the number of processors on the machine,
or, if specified, the value of the run-time option USRTHDS. The function
NUM_USRTHDS() returns the number of threads that will be explicitly
created by the user during execution of a program. This value is set by using
the XLSMPOPTS USRTHDS run-time option. The default value is 0. To be
noticed, the compiler option -qsmp has to be specified, otherwise
NUM_PARTHDS() will always return a value of 1.

The following simple example shows how to use the pthread Fortran90
module to apply locks and barriers. The program was written for
demonstration purposes only. It was not intended to present the most efficient
60 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

or complete implementation of a barrier. Indeed this version assumes a
constant number of parallel threads. For briefness, return codes are ignored.

As shown in the example, it is straight forward to mix SMP compiler directives
and pthread calls. In this case, the parallel threads are created implicitly by
the PARALLEL DO directive. At the beginning of the program, mutex objects
and condition variables have to be initialized. A lock is set though the function
call f_pthread_mutex_lock(mutex_name), similar to the OpenMP
OMP_SET_LOCK(var_name) subroutine call. The barrier is implemented as
a Fortran module. The subroutine fpth_barrier_set() uses a typical pthread
construct to build up a barrier.

The execution overhead to set up a barrier through the pthread interface
increases with the number of threads. It amounts to less than 33 micro
seconds compared to less than 8 micro seconds for a f_pthread_mutex_lock()
call or less than 12 micro seconds for a CRITICAL directive, as found at least
for eight or less parallel threads on a two processor machine, using the
defaults for the XLSMP run-time variables spins, yields, and delays.

 program hello_omp

 use f_pthread
 use fpth_barrier

 implicit none

 integer, parameter :: maxtask=20

 integer :: ntask, sg
 type(f_pthread_mutex_t) :: lock_mutex
 integer :: itask(maxtask), it, nb, rc

 common /global/ sg, lock_mutex

! --- init
 lock_mutex = pthread_mutex_initializer
 call fpth_barrier_init()
 ntask = num_parthds()
 sg = 0

 nb = 10

! --- parallel threads
!$OMP PARALLEL DO
 do it=1,ntask
 itask(it) = it-1
 call sub(nb, itask(it))
 end do

! --- clean up
 rc = f_pthread_mutex_destroy(lock_mutex)
 call fpth_barrier_destroy()

 end program hello_omp
Using the SMP Feature of XL Fortran 61

! **

 subroutine sub(nb, itask)

 use f_pthread
 use fpth_barrier

 implicit none

 integer :: nb, itask

 integer :: sg
 integer :: s, i, istart, iend
 type(f_pthread_mutex_t) :: lock_mutex
 integer :: rc

 common /global/ sg, lock_mutex
 common /local/ s

!IBM* THREADLOCAL /local/

!$OMP CRITICAL(crit0)
 print *, ’task ’, itask, ’starting ... ’
!$OMP END CRITICAL(crit0)

! --- compute partial sum
 istart = 1+itask*nb
 iend = (itask+1)*nb

 s = 0
 do i = istart, iend
 s = s + i
 end do

! --- update global sum
 rc = f_pthread_mutex_lock(lock_mutex)
 sg = sg + s
 rc = f_pthread_mutex_unlock(lock_mutex)

! --- wait until all tasks are finished
 call fpth_barrier_set()
 if (itask .eq. 0) then
 print *, ’Sum is ’, sg
 end if

 end subroutine sub

! **

 module fpth_barrier

 use f_pthread

! --- global vars --

 type(f_pthread_mutex_t) :: barrier_mutex
 type(f_pthread_cond_t) :: barrier_cond

integer :: taskcounter
 integer :: numtasks
62 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

 contains

! --- init barrier ---

 subroutine fpth_barrier_init()

 use f_pthread

 implicit none

 taskcounter = 0
numtasks = num_parthds()

 barrier_mutex = pthread_mutex_initializer
 barrier_cond = pthread_cond_initializer

 end subroutine fpth_barrier_init

! --- set barrier --

 subroutine fpth_barrier_set()

 use f_pthread

 implicit none
 integer :: rc

 rc = f_pthread_mutex_lock(barrier_mutex)

 taskcounter = taskcounter + 1
 if (taskcounter .eq. numtasks) then
 taskcounter = 0
 rc = f_pthread_cond_broadcast(barrier_cond)
 else if (taskcounter .lt. numtasks) then

rc = f_pthread_cond_wait(barrier_cond, barrier_mutex)
 end if

 rc = f_pthread_mutex_unlock(barrier_mutex)

 end subroutine fpth_barrier_set

! --- destroy barrier --
 subroutine fpth_barrier_destroy()

 use f_pthread

 implicit none
 integer :: rc

 rc = f_pthread_mutex_destroy(barrier_mutex)
 rc = f_pthread_cond_destroy(barrier_cond)

 end subroutine fpth_barrier_destroy

 end module fpth_barrier
Using the SMP Feature of XL Fortran 63

64 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

Chapter 5. Performance Libraries

There are several challenges to write programs that perform well on all
machines, since different architectures require different tuning techniques.

One solution is to have a unique program version for each architecture it is
intended to run on. This will, in general, increase the complexity of the code
as well as the complexity of the development. But even if you manage to
maintain only one version, the tuning itself tends to increase the complexity of
your program. As a more complex program increases the effort to maintain
the code, the development costs will also increase.

Therefore, commercial programs tend to be unoptimized. They will have a few
general optimization techniques implemented, but this will not give them the
performance they can expect, especially from a new processor like the
POWER3.

One way to solve this problem and get performance across different
architectures is to use standard libraries that are specifically tuned for each
platform.

This chapter describes two libraries, ESSL and MASS, that increase the
performance on all platforms they are used on, without losing portability. The
MASS library is a replacement of some FORTRAN intrinsic like EXP(). ESSL
provides significantly higher functions, such as linear algebra and FFTs.

5.1 The ESSL Library

The family of Engineering and Scientific Subroutine Library (ESSL) is a
collection of highly tuned routines you can use in your program. The ESSL
family for the AIX operating system consists of:

 • Parallel Engineering and Scientific Subroutine Library (Parallel ESSL) for
Advanced Interactive Executive (AIX), program number 5765-C41

 • Engineering and Scientific Subroutine Library (ESSL) for AIX, program
number 5765-C42

These products are state-of-the-art collections of mathematical subroutines
that provide a wide range of functions for many different scientific and
engineering applications.
© Copyright IBM Corp. 1998 65

Parallel ESSL runs under the IBM RS/6000 SP and clusters of IBM RS/6000
workstations. It offers mathematical subroutines in the six computational
areas and has one extra area for utilities, namely:

 • Level 2 Parallel Basic Linear Algebra Subprograms (PBLAS)

Level 2 PBLAS include a subset of the standard set of distributed memory
parallel versions of the Level 2 Basic Linear Algebra Subprograms
(BLAS). The Level 2 subroutines of BLAS perform vector-matrix operation.

 • Level 3 PBLAS

Level 3 PBLAS include a subset of the standard set of distributed memory
parallel versions of the Level 3 BLAS. The Level 3 subroutines of the
BLAS subroutines perform matrix-matrix operations.

 • Linear Algebraic Equations

Linear Algebraic Equations Subroutines consist of dense, banded, and
sparse subroutine, and include a subset of the ScaLAPACK
subroutines.The ScaLAPACK library can be found at:

http://www.netlib.org/scalapack/

The routines in PESSL includes:

 • Dense Linear Algebraic Equations Subroutines provide solutions to
linear systems of equations for real and complex general matrices and
their transposes, and for positive definite real symmetric and complex
Hermitian matrices.

 • Banded Linear Algebraic Equations Subroutines provide solutions to
linear systems of equations for real positive definite symmetric band
matrices, real general tridiagonal matrices, diagonally-dominant real
general tridiagonal matrices, and real positive definite tridiagonal
matrices.

 • Sparse Linear Algebraic Equations Subroutines and their utility
subroutines provide iterative solutions to linear systems of equations
for real general sparse matrices.

 • Eigensystem Analysis and Singular Value Analysis

Eigensystem Analysis and Singular Value Analysis Subroutines provide
solutions to the algebraic eigensystem analysis problem for real
symmetric matrices and the ability to reduce real symmetric and real
general matrices to condensed form. These subroutines include a subset
of the ScaLAPACK subroutines.
66 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

 • Fourier Transforms

Fourier Transform Subroutines perform mixed-radix transforms in two and
three dimensions.

 • Random Number Generation

Random Number Generation Subroutine generates uniformly distributed
random numbers.

 • Utilities

Utility Subroutines perform general service functions, rather than
mathematical computations.

ESSL runs on the following platforms:

 • POWER3

 • IBM RS/6000 POWER, PowerPC, symmetric multiprocessing (SMP)
PowerPC, and POWER2 Processors

 • IBM RS/6000 SP

It offers mathematical subroutines in nine computational areas and on an
extra utility area:

 • Linear Algebra Subprograms

Linear Algebra Subprograms consist of vector-scalar, sparse
vector-scalar, matrix-vector, and sparse matrix-vector linear algebra
subprograms:

 • Vector-Scalar Linear Algebra Subprograms include a subset of the
standard set of Level 1 BLAS and subroutines for other commonly used
computations. Both real and complex versions of the subprograms are
provided.

 • Sparse Vector-Scalar Linear Algebra Subprograms operate on sparse
vectors; only the nonzero elements of the vectors need to be stored.
These subprograms provide functions similar to those of the
vector-scalar subprograms and represent a subset of the sparse
extensions to the Level 1 BLAS. Both real and complex versions of the
subprograms are provided.

 • Matrix-Vector Linear Algebra Subprograms operate on a higher-level
data structure, matrix-vector rather than vector-scalar, using optimized
algorithms to improve performance. These subprograms represent a
subset of the Level 2 BLAS. Both real and complex versions of the
subprograms are provided.
Performance Libraries 67

 • Sparse Matrix-Vector Linear Algebra Subprograms operate on sparse
matrices; only the nonzero elements of the matrix need to be stored.
These subprograms provide functions similar to those of the
matrix-vector subprograms.

 • Matrix Operations

Matrix Operations Subroutines include Level 3 BLAS, as well as the
commonly used matrix operations: addition, subtraction, multiplication,
and transposition.

 • Linear Algebraic Equations

Linear Algebraic Equations Subroutines consist of dense, banded, sparse,
and linear least squares subroutines:

 • Dense Linear Algebraic Equations Subroutines provide solutions to
linear systems of equations for real and complex general matrices and
their transposes, positive definite real symmetric and complex
Hermitian matrices, and triangular matrices. Some of these subroutines
correspond to the Level 2 and Level 3 BLAS.

 • Banded Linear Algebraic Equations Subroutines provide solutions to
linear systems of equations for real general band matrices, real
positive definite symmetric band matrices, real or complex general
tridiagonal matrices, real positive definite symmetric tridiagonal
matrices, and real or complex triangular band matrices.

 • Sparse Linear Algebraic Equations Subroutines provide direct and
iterative solutions to linear systems of equations, both for general
sparse matrices and their transposes and for sparse symmetric
matrices.

 • Linear Least Squares Subroutines provide least squares solutions to
linear systems of equations for real general matrices. Two methods are
provided: one with a singular value decomposition and another with a
QR decomposition with column pivoting.

 • Eigensystem Analysis

Eigensystem Analysis Subroutines provide solutions to the algebraic
eigensystem analysis problem Az = wz and the generalized eigensystem
analysis problem Az = wBz. These subroutines give you several options
for computing eigenvalues or eigenvalues and eigenvectors.

 • Fourier Transforms, Convolutions and, Correlations:

 • Fourier Transform Subroutines perform mixed-radix transforms in one,
two, and three dimensions.
68 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

 • Convolution and Correlation Subroutines offer a choice between
Fourier methods or direct methods. The Fourier-method subroutines
contain a high-performance mixed-radix capability. Also, several
direct-method subroutines provide decimated output.

 • Sorting and Searching

Sorting and Searching Subroutines operate on three types of data: integer,
short-precision real, and long-precision real. The sorting subroutines
perform a sort with or without index designations. The searching
subroutines perform either a binary or a sequential search.

 • Interpolation

Interpolation Subroutines provide capabilities for polynomial interpolation,
local polynomial interpolation, and both one- and two-dimensional cubic
spline interpolation.

 • Numerical Quadrature

Numerical Quadrature Subroutines provide one-dimensional methods for
integrating a tabulated function and a user-supplied function over a finite,
semi-infinite, or infinite region of integration by Gaussian quadrature
methods. They also provide a two-dimensional quadrature capability
within a rectangular boundary.

 • Random Number Generation

Random Number Generation Subroutines generate uniformly or normally
distributed random numbers.

 • Utilities

Utility Subroutines perform general service functions, rather than
mathematical computations.

Several versions of most subroutines are provided, depending on the type of
data you are processing. These may include a short- and long-precision real
version, a short- and long-precision complex version, and an integer version.

The following Web pages contains more information on ESSL and PESSL:

http://www.rs6000.ibm.com/software/Apps/essl.html
http://www.rs6000.ibm.com/software/sp_products/esslpara.html

5.1.1 Benefits of Using ESSL
The main benefits include:

 • Portability
Performance Libraries 69

Since there exists an ESSL for each RS/6000 machine, you can move the
code between different machines and different architectures, without
changing the source code. It is also compatible with public domain
subroutine libraries such as BLAS, Scalable Linear Algebra Package
(ScaLAPACK), PBLAS, making it easy to migrate from these libraries to an
ESSL product.

 • Performance

The ESSL routines are written to perform well on each RS/6000
architecture. There is also a SMP version of the ESSL, in which a subset
of the functions are thread enabled. By using this version of ESSL, your
code would take advantage of all SMP features without any new
development.

5.1.2 How to Use ESSL
For access to the Guide and Reference see the following Web page:

http://www.rs6000.ibm.com/resource/aix_resource/sp_books/

Porting Fortran between CRAY and the IBM RISC System/6000:

http://www.software.ibm.com/ad/fortran/xlfortran/cray.htm

5.1.3 Performance Examples of ESSL
This section will discuss the performance of some of the ESSL routines. The
official ESSL and PESSL Performance Report can be found on:

http://www.rs6000.ibm.com/software/sp_products/performance/pesslperf.html

5.1.3.1 Dcopy
The following three approaches for copying the double precision array A into
array B are compared:

Table 9. Four Different dcopy Approaches

Simple Prefetch ESSL C memcpy

 B(I)=A(I) B(I)=A(I)+B(I)*ZERO CALL DCOPY() CALL memcpy()

The ESSL used in this publication is an early beta of a POWER3-enhanced
library, please refer to Appendix D, “Special Notices” on page 199
regarding the performance numbers.

Notice
70 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

How the prefetch works is shown in Figure 2., “Data Prefetch Overview” on
page 11.

In Figure 6, the performance of these copy routines using one POWER3 CPU
are shown. The numbers shown are the best out of three runs and both the
L1 as the L2 cache are flushed between each measurement. The most
efficient one is the ESSL. The simple approach from above is the second
slowest, but surprisingly, the slowest one is the C memcpy() function. By
unrolling the copy routine 16 times and multiplying only the first element with
zero, almost the same performance as the ESSL library is obtained. The main
difference is the drop of performance at 700000 KB. This event is currently
being investigated.

Figure 6. Copy Rates of a Double Precision Array
Performance Libraries 71

5.1.3.2 DAXPY
The three DAXPY versions shown in Table 10 are compared.

Table 10. Three DAXPY Versions:

Only the best run out of three is used, and the caches are flushed between
each run. As can be seen in Figure 7, the ESSL version is slower than the
handwritten versions for a vector length up until 5300. Above 5300, it is the
fastest one. This is an effect of the overhead in the ESSL routine, as it checks
the input arguments.

Figure 7. DAXPY Comparison

5.1.3.3 DGEMM
For an example and performance numbers using DGEMM, consult section
9.3, “Case Study: Matrix Multiplication” on page 151.

Simple 4x Unrolled ESSL

 Y(I)=Y(I)+A*X(I) Y(I)=Y(I)+A*X(I)
Y(I+1)=Y(I+1)+A*X(I+1)
Y(I+1)=Y(I+2)+A*X(I+2)
Y(I+1)=Y(I+3)+A*X(I+3)

CALL DAXPY()
72 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

5.1.3.4 Sorting of an Array
One way to optimize your program is to change the algorithm you are using.
Consider the following example of sorting an array. The simplest way of doing
it is by a bubble sort. Another algorithm is quick sort, which XL Fortran provides a
version of. ESSL has several sort algorithms, dsort was selected here. In
Figure 8, the three algorithms are compared. The timings are the best out of
three runs, and the caches are flushed between each run. All timings over 30
seconds were excluded. As can be seen in Figure 8, the bubble sort is only
good for a few thousand values. The ESSL dsort routine is faster than the
qsort provided by XL Fortran.

Figure 8. Three Sorting Algorithms

5.2 MASS

The Mathematical Acceleration SubSystem (MASS) library is another
approach to increase the performance of a code. It provides high
performance versions of a subset of Fortran intrinsic functions. To do this, it
sacrifices a small amount of accuracy. Compared to the standard
mathematical library, libm.a, the MASS library can only differ in the last bit.
This is not significant in most programs. The libmass.a library can be used
Performance Libraries 73

with either Fortran or C applications and will run under AIX on all of the IBM
RS/6000 processors. As all functions in the MASS library use the same
syntax as the standard functions it replaces, you do not have to make any
changes in the source code to use it.

MASS also offers a vector version for some of the functions. The vector
functions are more efficient than the scaler ones, but require that the source
code is rewritten. There are two versions of the vector MASS library. The first
library, libmassv.a, contains vector function subroutines that will run on the
entire IBM RS/6000 family. The second library, libmassvp2.a, contains the
subroutines of libmassv.a and adds a set that is tuned for and based upon the
POWER2 architecture. As code or a library that is compiled using the
-qarch=pwr2 flag will not run under POWER3, you cannot use this library on
Model 260. At the moment, there is no specific tuned version for the
POWER3.

All versions of the MASS library can be downloaded from:
http://www.rs6000.ibm.com/resource/technology/MASS/

Version 2.4 is used for all tests in this section. This version is not thread safe.

The accuracy of the functions in the MASS library can be found on the MASS
Web page mentioned above.

5.2.1 How to Use the MASS Library
To use the standard MASS library, relink your program using the linker option
-lmass:

xlf -o my.exe -O3 -qarch=pwr3 -lmass

This assumes that the MASS library is in a directory included in your library
search path. If this is not the case, you have to give the location of the library
with the -L linker option. As -lmass replaces some of the function in -lm, you
must link it before you link with -lm.

If the use of standard MASS is successful, the chance to further increase the
performance using the vector version of MASS is high. Please note that as
you frequently have to include extra arrays in your code, there will be more
memory operations to fill compared to the original version of your code.
These extra operations could decrease the overall performance even if the
calculation is done faster.
74 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

In order to guarantee the portability of a code using the vector MASS library,
the MASS package also provides Fortran source for all vector MASS library
functions which can be used on different platforms.

5.2.2 Performance of the MASS Library

In order to see the performance gain of using the MASS libraries, the number
cycles used to perform some often used mathematical functions were
counted. The results are listed in Table 11.

In general, there is a speedup factor between 1.2 and a little over 2 by going
from the standard math library to the scalar MASS library and another factor
between 2 and 5 by going to the vector MASS library. There are two important
exceptions:

1. The POWER3 has the square root function implemented in the hardware
of the CPU. When compiling for POWER3 using the compiler option
-qarch=pwr3, the compiler will not generate a call to the sqrt() library
function but use the hardware instead. Therefore, there is no difference in
the cycle count comparing the standard math library with the MASS library.
Figure 2 on page 11 shows the number of cycles for a hardware sqrt to be
22. As each POWER3 processor has two FPU, it can calculate two sqrts
simultaneously. The Fortran compiler generates codes, which dispatches
the sqrt calls very well; so only 11 cycles cost per sqrt call are required.

When compiling with -qarch=com, which disables the hardware sqrt , a
speedup from about 20percent is obtained, by using MASS compared to
libm. The vector MASS is almost six times faster than the libm.

2. Table 2 on page 9 also shows that the number of cycles needed for a
double precision division is 18. Again, as the POWER3 has 2 FPUs, two
divisions can be performed in parallel and the compiler does a very good
job in dispatching them to get only 9 cycles cost per division, but the

The MASS library used was not tuned for the POWER3 processor. The
generic version of the MASS library is used for measurements in this
section.

Take Note
Performance Libraries 75

MASS library is able to speed up it slightly. Note that this could be
improved if a POWER3 optimized library is developed.

Table 11. Cycles of Some Functions

Remarks:

1. The arrays A and X each have 1024 elements.
2. R describes the range the value of input arguments can take:

 • A: 0<A(i)<1
 • B: -1<A(i)<1
 • C: 0<A(i)100
 • D: -100<A(i)<100.

3. Compiled with -qarch=com.
4. A is in range B, B is in range D.

The cycle numbers show the performance gain by a given vector length. But
you will get a different speedup for different vector length. As an example
consider the following simple loop using the exponential function:

DO I=1,N
 A(I)=EXP(B(I)
END DO

Function 1 R 2 libm.a MASS Vector MASS

Cycles Cycles Speedup Cycles Speedup

X(I)=SQRT(A(I)) A 11.0 11.0 1.0 9.4 1.2

X(I)=SQRT(A(I)) 3 A 58.9 45.4 1.3 9.4 6.3

X(I)=EXP(A(I)) D 64.3 33.3 1.9 11.0 5.8

X(I)=LOG(A(I)) C 83.0 53.4 1.6 11.5 7.2

X(I)=SIN(A(I)) B 37.7 15.7 2.4 6.6 5.7

X(I)=SIN(A(I)) D 50.0 31.5 1.6 16.4 1.9

X(I)=COS(A(I)) B 37.2 15.7 2.4 5.8 6.4

X(I)=COS(A(I)) D 48.3 32.7 1.5 16.3 3.0

X(I)=TAN(A(I)) D 84.1 50.1 1.7 18.4 4.6

X(I)=TAN(A(I)) D 80.8 50.3 1.6 18.4 4.4

X(I)=A(I)/B(I) B,D 4 9.2 9.2 1.0 7.1 1.3

X(I)=1.0/A(I) D 9.0 9.0 1.0 7.0 1.3
76 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

with A and B are double precision arrays. Compare this loop using the
standard exp() function from libm, the standard MASS exp() function, and
with the vector MASS function, You get by changing the loop into a function
call:

CALL EXPV(A,B,N)

The speedup gained is seen in Figure 9 on page 77. The two horizontal lines
mark the positions the arrays size exceeds the size of the L1 and L2 cache.
The time for the standard version of the exp() function is normalized to one.
The middle curve is the speedup for the standard MASS library. The speedup
is around 1.8 for large N’s. The upper curve is the speedup gained by using
the vector mass library. It has a peak of 5.9 at a vector length of 3000
elements. The speedup for very large values of N approximates 4.97.

Figure 9. MASS Use of Exp()

5.2.3 Further Tuning Possibilities Using Vector MASS
As some functions provided by the standard math library can be rewritten
using a different algorithm which benefits from the vector MASS library, it is
worthwhile to demonstrate the following.
Performance Libraries 77

5.2.3.1 The Complex Exp() Function
The standard Fortran exp() function can be used in conjunction with complex
numbers. You would simply write (where X and Y are complex numbers):

DO I=1,N
 X(I)=EXP(Y(I))
END DO (ex.1),

By splitting y(j) into its real and imaginary parts a(j) and b(j) with y(j)=a(j)+ib(j)
and using Euler’s equation, you get the following formula for the complex
exp() function:

By coding this into Fortran, you get:

X(I)=CMPLX(
EXP(REAL(A(I)))*COS(IMAG(A(I))),
EXP(REAL(A(I)))*SIN(IMAG(A(I)))) (ex.2)

In order to use the vector MASS library, you must rewrite it one more time
using the vector MASS subroutine vsincos. This subroutine calculates both
the sin and the cosine value of one argument in one call:

DO I=1,N
 RA(I) = REAL(A(I))
 IA(I) = IMAG(A(I))
END DO
CALL VEXP(RA, REA, N)
CALL VSINCOS(ISA, ICA, IA, N)
DO I=1,N
 X(I) = CMPLX(REA(i)*ICA(i), REA(i)*ISA(i))
END DO (ex.3)

This is an example in which you have to introduce more arrays in order to use
the vector library. Please note that this code fragment is written to see the
relationship to the Euler’s equation. It is, simply, to reduce the numbers of
arrays needed.

Examples 1,2, and 3 are programmed, and the number of cycles needed to
solve the problem are counted. As Table 12 shows, the results are very good.
By using the vector MASS, you could speedup the calculation by a factor
between 5.2 and 5.9 depending on the vector length.

xi ai ibi+()exp aiexp iaiexp⋅ aiexp bicos i bisin+()⋅= = =
78 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

Table 12. Complex Exponential Function

5.2.3.2 The Power Function Using The Vector MASS Library
Another frequently used function is the power function x(i)=a(i)**q (ex.1). The
power function is one of the most expensive intrinsic. Replace the standard
Fortran power function with the following equation:

This can be written in Fortran:

DO I=1,N
 X(I)=EXP(Q*LOG(Y(I)))
END DO (ex.2)

In this example, you don’t have to introduce an extra array in order to use the
vector MASS, since you can use X for temporary values:

CALL VLOG(X,Y,N)
DO I=1,N
 X(I)=X(I)*Q
END DO
CALL VEXP(X,X,N) (ex.3)

As can be seen in the Table 13, you get a speedup factor close to ten by
using the vector MASS library compared to the standard power function.

Table 13. Power Function

Ex. using n=16 n=64 n=256 n=1024

1 libm.a 179.0 1.0 171.0 1.0 169.5 1.0 168.5 1.0

1 MASS 85.2 2.1 84.8 2.0 84.7 2.0 84.7 2.0

2 MASS 75.0 2.4 74.7 2.3 74.4 2.3 74.5 2.3

3 vector 34.7 5.2 30.3 5.6 30.0 5.7 28.8 5.9

Ex. using n=16 n=64 n=256 n=1024

1 libm.a 228.5 1.0 227.8 1.0 224.0 1.0 224.8 1.0

2 libm 152.4 1.5 150.8 1.5 150.1 1.5 150.4 1.5

1 MASS 98.2 2.3 97.9 2.3 97.8 2.3 97.7 2.3

2 MASS 90.6 2.5 90.5 2.5 90.4 2.5 90.4 2.5

3 vector 29.1 7.9 24.7 9.2 23.7 9.5 23.4 9.6

xi yi
q q yilog⋅()exp= =
Performance Libraries 79

80 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

Chapter 6. Message Passing Interface

A large number of programs have already been written for parallel processing
using MPI. Many of these programs will be running on the single processor
nodes of IBM SP configurations. These programs can be run without change
on the two processors of the Model 260 simply by using MPI on the 260.

The following sections consider the use of MPI in a mixed shared memory
and distributed memory environment, followed by some measurements of
MPI data transmission rates on the Model 260.

6.1 MPI in an SMP Environment

This section takes a look at how existing MPI programs, written for distributed
memory systems, can make the best use of both SMP and distributed
memory systems. A number of different scenarios are considered below:

1. MPI only

IBM’s MPI currently uses IP for message passing between processes on
the same node and between processes on different nodes. This incurs
relatively high latencies and IP overheads.

With the multiple userspace version of MPI, the overhead will be reduced,
but it may still be higher between processes on the same node than using
shared memory.

Eventually, it is expected that a version of MPI will be available that will use
shared memory for processes on the same node and userspace (or IP) for
processes on different nodes. However, it is expected that overall
performance will still be limited by communication between the nodes.
This could be reduced for group operations (such as broadcast) by having
one processor per node handle all the internode communication. This
process would use shared memory to collect and distribute data to other
processes on the same node.

Since the different processes on the same node have different address
spaces they will communicate though a shared memory segment. This
mean either a double copy of the data (into and out of the shared memory
segment), or each process must keep its data in the shared memory
segment (which will require some degree of reprogramming).

For scenarios that only require SMP processing, the public domain
software from Argonne (MPICH) is currently available. This uses shared
memory to communicate data and has low latency and high data transfer
rates.
© Copyright IBM Corp. 1998 81

Generally, no reprogramming is required.

2. MPI and SMP Fortran

In this scenario, there are fewer MPI processes than processors per node.
(For the Model 260, this means one MPI process.) Fortran can be used to
parallelize the code between SMP calls. However, the overhead of Fortran
parallelization is similar to that of MPI data transfers; so care must be
taken to parallelize sufficiently large chunks.

A small amount of reprogramming may be required.

3. MPI and Large Chunk Threads

In this scenario, there is only one MPI process per node. The initial
process (or master thread) creates threads which, instead of issuing MPI
calls, use pthread techniques to transfer data between themselves and the
master thread. The master thread uses MPI to transfer all data between
the nodes.

Data does not have to be copied between threads, since they all use the
same address space. Synchronization can be achieved either with
standard pthread calls, or, with even less overhead, by using spin loops
and the atomic fetch_and_add function (which guarantees that only one
thread at a time can update a variable).

The total number of messages between nodes is reduced, and hence,
delays due to latency are reduced. Since the master thread handles all
messages, it should perhaps be coded to do less work than the other
threads

However, all of this may imply considerable reprogramming. The program
may have used the MPI task-ID to create its arrays and organize its data.
The threads will have to arrange this differently, because they share the
same task-ID, and are using the same address space.

The advantages and disadvantages of these scenarios are summarized in
Table 14

Table 14. Advantages and Disadvantages of Msg Passing Techniques

Advantages Disadvantages

MPI only No program changes.
MPI copy between processes on
same node.

Double copy between processes
on same node.
Not all functions available yet.

MPI and
SMP
Fortran

MPI exchanges reduced. Some reprogramming required.
May not be possible to fully use the
CPUs.
82 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

In conclusion, all of the scenarios are viable. The scenario chosen for any
particular application will depend on the requirements. Going from the top to
the bottom of the table, the efficiency of the solution increases, but the
amount of reprogramming required also increases.

The last, and most efficient, scenario is the one used by the sPPM ASCI
benchmark code. More information about this can be obtained from:

http://www.llnl.gov/asci_benchmarks/asci/limited/ppm/sppm_readme.html

6.2 MPI Communication Rates

Three varieties of MPI were investigated to look at the communication rates
obtainable:

1. IBM MPI

This was run in IP mode using loopback mode (obtained by inserting
loopback in the host.list file). Various IP options were set as follows:

/usr/sbin/no -o thewall=16384
/usr/sbin/no -o sb_max=1310720
/usr/sbin/no -o tcp_sendspace=327680
/usr/sbin/no -o cp_recvspace=327680
/usr/sbin/no -o udp_sendspace=65536
/usr/sbin/no -o udp_recvspace=655360
/usr/sbin/no -o rfc1323=1

The maximum transmission unit (MTU) value for the loopback interface
was 16896. Generally, a lower value is used for Ethernet connections
between workstations, and a higher value for IP connections over the SP
switch.

2. MPICH

This is a portable implementation of MPI developed at the Argonne
National Laboratory. It can run either over a cluster of workstations, using
IP for communication, or on a single workstation with multiple processors,
using shared memory for communication. MPICH was run using the
shared memory option.

MPI and
Large
Chunk
Threads

MPI Exchanges reduced.
Exchanges and overhead
between threads reduced.

Considerable reprogramming may
be required.

Advantages Disadvantages
Message Passing Interface 83

3. Test MPI

For processing that involves processors on the same and different
systems, it will be good to have an MPI version that uses shared memory
for processors on the same workstation or SP node, but uses the network
interface to communicate with other workstations or SP nodes.

Such a version is currently under development, but in order to get an idea
of the performance that might be achievable, a simple shared memory
implementation of MPI blocking and non-blocking send and blocking
receive (MPI_SEND, MPI_ISEND, and MPI_RECV) was written. This
implementation was used to measure the performance for calls between
processors on the same node.

If these calls require communication between different nodes, the current
IBM MPI can be invoked. For an IBM SP, the high performance userspace
option of IBM MPI would be used.

The results for synchronous send and receive (that is, with one processor
issuing a blocking send followed by a blocking receive, and the other
processor issuing matching receive followed by a send) are shown in Figure
10 on page 85.

The results for asynchronous send and receive (that is, with both processors
issuing a non-blocking send followed by a blocking receive) are shown in
Figure 11 on page 85.
84 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

Figure 10. MPI Synchronous Transfer Rates

Figure 11. MPI Asynchronous Transfer Rates
Message Passing Interface 85

Clearly, the test MPI implementation is the fastest. Since many programs
issue a relatively small number of different MPI calls, it is felt that the test MPI
implementation could be fairly rapidly extended to cover a subset of the most
frequently used calls. This would enable SMP nodes in an SP environment to
be used to their fullest advantage in the very near future.

A subset of frequently used calls might be:

MPI_SEND, MPI_ISEND
MPI_RECV, MPI_IRECV
MPI_BCAST, MPI_REDUCE
MPI_ALLREDUCE, MPI_ALLTOALL

A further enhancement might be to make one processor on each node a
dedicated communicator. The dedicated communicator could collect and
combine all messages from processors on the same node that went to other
nodes. This would decrease the number of messages passed between
nodes, thus decreasing the overall delay due to latency.

The minimum latency time and maximum transfer rates are summarized in
Table 15.

Table 15. Synchronous versus Asynchronous Transfer Times

Synchronous Transfer Asynchronous Transfer

Latency
(microsec)

Rate
(MB/s)

Latency
(microsec)

Rate
(MB/s)

Test MPI 3 227 2 393

MPICH 8 142 6 297

IBM MPI 1044 78 55 100
86 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

Chapter 7. Performance and Tuning Analysis

This section investigates some of the main design features of POWER3 that
are relevant to tuning scientific and technical programs running on Model
260.

It is intended to provide all the information necessary for experienced Fortran
programmers, who have a general understanding of tuning techniques, to
tune their programs for POWER3 and the Model 260. For programmers with
relatively little experience of tuning for the IBM RS/6000 RISC, Chapter 8,
“Fortran Tuning Guide for Maximum Megaflops” on page 107, will be more
appropriate.

After summarizing relevant information, tuning for the CPU is discussed, and
then tuning for memory access. A few basic examples are presented.

7.1 Relevant Information

The information below is relevant for tuning purposes. To some extent, it is a
summary of information presented previously in Chapter 2, “The POWER3
Processor” on page 7, and Chapter 3, “XL Fortran Version 5” on page 17.

 • Floating-point units

There are two floating-point units. The length of the pipeline in each is
three or four cycles. It will be four cycles if the input data for one pipe
comes from the other pipe. Since this is difficult to influence, it is best to
assume four cycles for planning purposes.

Each unit can deliver one result per cycle.

 • Other Processing Units

 • In addition to the two floating-point units, there are three fixed point
units, and two load/store units, all of which can execute in parallel.

 • Instructions must complete in order, although results from an
instruction can be used by other instructions prior to completion of the
previous instruction.

 • A maximum of 32 instructions can be handled simultaneously, where
handling includes other operations (such as instruction fetch, decode
and dispatch, rename buffer allocation, and write back to architected
registers) as well as execution.

 • A maximum of four instructions can be completed per cycle.
© Copyright IBM Corp. 1998 87

 • Data transfer rates

Data transfer rates between memory, cache and processor are listed in
Table 16.

Table 16. Data Transfer Rates for L1, L2, and Memory

Note that the transfer rate from memory to L2 (or L1) is the total aggregate
rate for the memory subsystem to both L2s (or L1s). The other transfer
rates are for each processor.

 • Prefetch

The Model 260 can prefetch streams of data from memory into L1 cache.
When data is prefetched, it is not put into the L2 cache.

Four prefetch streams can be active at any one time. Activation of a
stream is performed using a set of ten stream address filters. Following a
load-cache-miss for a cache line, a prediction is made of which line will be
required next. This prediction is entered into the least recently used filter.
If a subsequent cache-miss actually agrees with one of the ten entries,
then one of the four prefetch streams is activated, and the next cache line
is read into a prefetch buffer.

For an active prefetch-stream, a new line is read into the prefetch buffer
as soon as the prefetch buffer is accessed.

The prediction, referred to above, is made by assuming that if the word
that causes the cache-miss occurs in the bottom half of the buffer, the next
higher line will be required, but if the miss occurs in the top half, then the
next lower line will be required. If data is being accessed sequentially in
either a forwards or backwards direction, then if the first prediction is
wrong, it is easy to see that the next prediction will be correct. (It is left as
an exercise for the reader to verify this.)

 • L1 Cache

The L1 cache contains 512 lines of 128 bytes each and is 128-way
associative. This means that any word in memory can be loaded into any
one of 128 lines in a specific congruence class (determined by bits 55 and
56 of the address to be specific).

 Memory to L2 or L1 L2 to L1 L1 to Registers

Width 16 bytes/2 cycles 32 bytes/cycle 2 x 8 bytes/cycle

Rate 1.6 GB/s 6.4 GB/s 3.2 GB/s

Latency 35 cycles
(approximately)

6 to 7 cycles
(approximately)

1 cycle
88 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

Cache lines are loaded, and replaced, in their entirety, starting with the
word that is referenced. Lines are replaced on a round-robin basis within
each congruence class.

 • L2 Cache

Each processor has a private L2 cache of 4 MB. Real addresses are
directly mapped to the cache. This means that 128 byte line in memory
has just one place in the cache into which it can be loaded. Since the
loading and replacement of lines depends on real addresses, replacement
may appear to be random as far as a program is concerned.

 • L1 Interleaving

The L1 cache is 8-way interleaved to achieve multiple accesses per cycle.
There is 4-way interleaving on cache lines and 2-way interleaving on
double-words. This means that a pair of load accesses to the cache can
execute in the same cycle with the following exception: successive
accesses to two even double words or to two odd double words (same bit
59) that are in the same congruence class (same bits 55 and 56) cause
one of the accesses to be delayed by one cycle.

In addition, if there are two or more lines in the cache with identical
addresses in bits 43 though 54, the cache access method allows only one
of them to be accessed without penalty. The other(s) will incur a delay of
approximately seven cycles.

 • Translation Lookaside Buffer

The translation lookaside buffer (TLB) contains 256 entries and is 2-way
associative. Each entry provides the resolution between a virtual and real
memory address for a 4 KB page. If there is an appropriate entry in the
TLB, a virtual address can be translated to a real address without any
additional cycles.

However, only 1 MB of memory can be covered by the TLB entries, and in
the absence of a TLB entry, a table entry group, occupying 64 bytes, must
be fetched from memory. This may in itself cause a cache-miss. Also, the
address of the TLB entry is found by a hashing algorithm, and so the entry
may not be found at the first attempt.

 • Fortran Compiler Flags

This following is a small selection of the compiler flags that have been
found to be most relevant for tuning.

-O2 will optimize the program but maintain the semantics. That
is, it will not change the order of computation specified by
the program if this may cause the results to be non-bit
wise identical. It will do a minimal amount of unrolling.
Performance and Tuning Analysis 89

-O3 will optimize the program and may change the order of
computation to give mathematically equivalent (but
non-bitwise identical) results. It may implement a
significant amount of unrolling.

-qstrict can be used with -O3 to obtain optimization benefits, but
to maintain bitwise identical results.

-qarch=pwr3 will use the new POWER3 instructions, including those for
single precision computation. It will not use the POWER2
quad-word load instruction.

-qfloat=hsflt will enable divides to be calculated by computing the
reciprocal followed by one or more multiplies. This can
result in significant speedups if two or more divides are
replaced in this way.

Note that without -qarch=pwr3, hsflt also removes all
checking when double precision numbers are converted
to single precision. This speeds up computation but is not
safe if a single precision exponent may exceed its limits.

However, with -qarch=pwr3, this is not the case. Checking
is implemented, or POWER3 single precision instructions
are used.

-q64 tells the compiler to use 64 bit integer instructions for
integers that have been declared as 8 bytes (either with
-qintsize=64 or INTEGER*8). Note that -q64 also has
many other implications (see 3.3, “64-Bit Support” on
page 19).

In the following discussions, -O3 and -qarch=pwr3 optimization is
assumed unless stated otherwise.

7.2 CPU Tuning

The POWER3 processor is similar to that of the POWER2. Differences are
mainly due to the increase in the floating-point pipe length from two or three
to three or four cycles. There is also an additional integer unit and two
load/store units.

7.2.1 Unrolling
Since the Model 260 has floating-point pipes of three or four cycles long, up
to six to eight instructions, which are not dependent on each other, should be
scheduled successively. Also, for best performance, the number of loads plus
90 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

the number of stores should not exceed the number of floating-point
operations.

Usually, the Fortran compiler does an excellent job of unrolling the loops
(particularly when using the -O3 flag). This facilitates the overlapping of
independent operations. However, there are some occasions when the
compiler does not succeed, and some assistance in unrolling the loops is
beneficial. It is difficult to give any firm rule about this because the compiler
improves with each release, but a couple of examples (using V5.1.1.0 of the
compiler) are given in the following sections.

Further examples are also presented in Chapter 8, “Fortran Tuning Guide for
Maximum Megaflops” on page 107.

7.2.1.1 Convolution
The convolution algorithm is frequently used in signal processing. It is
included here as an example of how unrolling can be used to achieve nearly
maximum possible performance. The basic code shown below runs at only
about 150 MFLOPS:

DO I=1,1500
DO J=1,150
C(I)=C(I)+B(I+J-1)

ENDDO
ENDDO

If the code is unrolled as shown below, up to ten independent floating-point
multiply/add operations can be overlapped. Also, for a total of 20
floating-point operations, only 13 loads are required. Theoretically, the Model
260 can process load/store operations at the same rate as floating-point
operations, but, because of L1 Interleaving (see 7.1, “Relevant Information”
on page 87), it is generally better to have fewer load/store operations.

DO I=1,1500,10
S0=0.E0
S1=0.E0
...
S9=0.E0
DO J=1,150,2
C0=C(I+J-1)
C1=C(I+J)
....
C10=C(I+J+9)
B0=B(J)
B1=B(J+1)
S0=S0+B0*C0
Performance and Tuning Analysis 91

S1=S1+B0*C1
....
S9=S9+B0*C9
S0=S0+B1*C1
S1=S1+B1*C2
....
S9=S9+B1*C10

ENDDO
C(I)=S0
C(I+1)=S1
....
C(I+9)=S9

ENDDO

This code ran at 785 MFLOPS, which is very close to the theoretical
maximum of 800 MFLOPS. The compiler flags used were -O2 and
-qarch=pwr3. Interestingly, this code was originally written for the POWER1
in 1990 and still produces exceptional performance.

7.2.1.2 Multiple Loads
The following example is used to demonstrate both unrolling for good
processor performance (when the data is in the cache) and the effect of
prefetch on multiple streams of data when the data is not in the cache (see
“Multiple Streams” on page 97).

The basic loop for L streams of data in arrays A1 through AL is:

DO I=1,N
S = S + A1(I)*A2(I) + A3(I)*A4(I) + ...AL(I)

ENDDO

This type of summation has a history of giving the compiler problems, and
this loop does not perform well with the current version of the compiler
(V5.1.1.0), either with -O3 or -O4. The loop can be rewritten as below to give
improved performance:

DO I=1,N
S1 = S1 + A1(I)*A2(I)
S2 = S2 + A3(I)*A4(I)
....

ENDDO
S = S1 + S2 + ...

Results for both loops are shown in Figure 12 on page 93, where each data
array is only 8 KB so that all data arrays will be kept in the cache.
92 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

The performance of the loop is limited by the data transfer rate. The
maximum theoretical rate is 3.2 GB/s. This is almost achieved for two
streams by both the basic and the hand unrolled loop. The basic loop also
achieves 3.2 GB/s for eight streams, although the hand unrolled loop gives as
good or better results except for the other streams.

It is not easy to fully understand how the compiler unrolls and overlaps
instructions, and since this is likely to change from release to release, no
attempt is made to do so here. Suffice to say, that if, for any loop, the
compiler does not do as well as expected, then it may be beneficial to unroll
the loop by hand. The right thing to do is to try it and see.

Figure 12. Stream Rates for Data in Cache

7.2.2 Divides
As always, divides take a lot of cycles (14 for single precision floating point,
and 18 for double precision), and should be avoided where possible.
However, where they cannot be avoided, they frequently take a large part of
the processing time, and every effort should be made to minimize their effect.

If there is more than one divide using the same denominator in a loop, then if
hsflt is specified, the Fortran compiler does a good job of taking the reciprocal
and then multiplying by the reciprocal. Where possible, the compiler also
Performance and Tuning Analysis 93

does a good job of scheduling two divides (or reciprocals) together so as to
use both floating-point pipes, often unrolling the loop to achieve this.
However, in the following fragment from the LU decomposition of a tridiagonal
solver, this is not possible:

DO I=1,N
T = B(I)+A(I)*B(I-1)
B(I) = -C(I)/T
Y(I) = (Y(I)-(A(I)*Y(I-1))/T

ENDDO

The compiler will take the reciprocal of T and multiply it twice. It will also
unroll the loop, but because the loop is recursive, the reciprocal in one loop is
dependent on the reciprocal in the previous loop, and so two reciprocals
cannot be scheduled together. To enable the compiler to achieve this, two (or
more) tridiagonal solutions have to be coded together. For example:

DO I=1,N
T = B (I)+A (I)*B (I-1)
T1 = B1(I)+A1(I)*B1(I-1)
B (I) = -C (I)/T
B1(I) = -C1(I)/T1
Y (I) = (Y (I)-(A (I)*Y (I-1))/T
Y1(I) = (Y1(I)-(A1(I)*Y1(I-1))/T1

ENDDO

This enables the compiler to schedule two divides together, and the solver to
run up to two times faster.

If it is decided not to compile with hsflt because it may be unsafe (see
“Relevant Information” on page 87), then the reciprocal computation should
be hand coded.

7.2.3 Floating Point to Integer Conversion
Floating point to integer conversion is particularly important in many seismic
codes, where it is used to create an index for table lookup. Floating point to
integer conversion is implemented by hardware instructions, but still takes a
relatively long time. For example, a loop containing:

J(I) = INT(S(I)+A)

takes over 5 cycles. By contrast:

J(I) = ISHFT((JS(I)+IA),-10)

takes only about 1.5 cycles. The array JS has been initialized to contain the
same values as the array S, multiplied by 1024 to preserve accuracy, and then
94 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

accessed many times with the above code. Much greater accuracy can be
obtained if the 64-bit integer arithmetic capability of POWER3 is used. 64-bit
integers can store numbers up to 8x10246; so the JS array could contain the
values of S multiplied by two or three powers of 1024.

To use 64-bit arithmetic, the required arrays must be declared INTEGER*8,
and the -q64 compiler flag must be used to tell the compiler to use 64 bit
integer instructions. Note that the whole program must be recompiled with
-q64 in order for all routines to link correctly.

7.2.4 Fractional Part of a Number
There is a useful trick (provided by Jim Shearer - one of the authors of the
MASS Library - from the IBM Watson Research Laboratory at Yorktown) that
can be used to obtain the fractional part of a floating-point number. This is
often required for interpolation purposes. The fractional part of a double
precision number would normally be obtained, within a loop, by:

F(I) = A(I) - FLOAT(DNINT(A(I))

This can be done approximately 8 times more quickly by using:

PARAMETER(RND=2D0**52+2D0**51)
. . .
F(I) = A(I) - (RND + A(I) - RND)

The code was compiled using -O3 and -qstrict. It was necessary to use
-qstrict to prevent the compiler changing the order of computation, and
setting F(I) equal to zero.

7.3 Memory Tuning

The Model 260 memory subsystem has a major advantage over previous
POWER2 systems in that it can support four concurrent cache-misses and
four prefetch streams.

This capability is discussed in the following sections.

7.3.1 Copy
A straightforward copy is as follows:

DO I=1,N
X(I)=Y(I)

ENDDO
Performance and Tuning Analysis 95

However, a store-miss is not prefetched. A store-miss occurs when a store
instruction causes a line miss. The correct line must then be fetched into
cache before the store instruction can store the data.

This delay can be overcome by taking advantage of the load-miss prefetch
capability. The array X is loaded and multiplied by zero before it is stored.
The tuned code becomes:

DO I=1,N
X(I)=Y(I)+ZERO*X(I)

ENDDO

Results are shown in Figure 13 on page 96.

The multiply/add instruction does not require any extra time because it is
overlapped with the load and store instructions, but when the data is in the L1
cache (that is when the data arrays are each less than 32 KB), the additional
load causes the copy to run more slowly. This is because there are now three
load/store operations and there are only two load/store pipes.

However, when the data is not in the L1 cache, the advantage of prefetch
predominates and the copy runs more quickly.

Figure 13. Single Processor Copy Rates
96 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

7.3.2 Multiple Streams
The hardware will prefetch up to four streams of data. The Fortran loops
considered here have been described in 7.2.1.2, “Multiple Loads” on page 92.
The effects of accessing multiple streams of data, when the data is not in the
L1 (or L2) cache, is shown in Figure 14.

As can be seen, the maximum aggregate rate is achieved with four
streams.This to be expected since the Model 260 implements up to four
prefetch streams. The maximum rate achieved is 1.36 MB/s, which compares
well with the theoretical maximum of 1.6 MB/s.

Figure 14. Stream Rates for Data Not in Cache

With only one stream, the prefetch mechanism cannot keep up with the cache
line requests. Each prefetch begins when the previous line is accessed (see
Figure 15 on page 98). As can be seen, the data transfer is overlapped but
latency is not, and since the latency is about 35 cycles, the expected rate is
about

128bytes/(35x5nsec) = 730 MB/s

This agrees well with the measured rate in Figure 14.
Performance and Tuning Analysis 97

Figure 15. Single Stream Prefetch

7.3.3 DAXPY
The DAXPY algorithm is frequently used as a measure of memory
performance because the MFLOP rate is limited by the storage access rate.
The Fortran code is:

DO I=1,N
Y(I)=Y(I)+A*B(I)

ENDDO

Note that it is similar to the tuned copy (see 7.3.1, “Copy” on page 95, and
Figure 13 on page 96). Measurement of the performance of this loop provides
some interesting results.

The first measurement is shown in Figure 16 on page 99. Note that there are
several downward spikes, occurring when the number of bytes is too large for
the L2 cache. Further measurements showed that the exact position of the
spikes varied with each run. Combining the best results for each individual
point from four runs, gave the results in Figure 17 on page 100.

The presence of the downward spikes is due to the overlaying of 128 byte
lines in the L2 cache. This varies with each run because the L2 addresses are
directly mapped to memory, and the allocation of the program’s virtual
memory to real memory changes with each run.

The results in Figure 17 still show a sharp dip at 4 KB. This was because the
start of the X and Y arrays are separated by a large power of two plus 4 KB.
The explanation is as follows. If the addresses of any two lines in the L1
cache have the identical values for bits 43 through 54, then only one of them
can be accessed without penalty. When the other is accessed, a delay of
approximately seven cycles occurs. This means that if two arrays, which are

Prefetch

1

2

3

Latency
Data
Xfer

35 cycles 16 cycles
98 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

exactly 2 MB apart, are sequentially accessed, then the seven cycle delay will
continually occur.

The two arrays were therefore separated by an additional 64 KB (the L1
cache size), and the results in Figure 18 on page 100 were obtained.

Figure 16. DAXPY: Single Run
Performance and Tuning Analysis 99

Figure 17. DAXPY: Best of 4 Runs (1)

Figure 18. DAXPY: Best of 4 Runs (2)
100 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

7.3.4 Loads and Stores
It is very apparent, by comparing the MFLOPS rates obtainable using the
DAXPY algorithm with the MFLOPS that can be obtained using the
convolution algorithm, that loads and stores can severely inhibit achievable
MFLOPS. A simplified example of the type of construction which is often
found in vector processing legacy code is:

DO J=1,N
B(J)=XYZ*A(J)

ENDDO
DO J=1,N
C(J)=ABC*B(J)

ENDDO

Fairly obviously, this should be replaced by:

DO J=1,N
C(J)=ABC*XYZ*A(J)

ENDDO

thus saving one store and one load.

7.3.5 Prefetching Individual Cache Lines
It is possible to prefetch individual cache lines. The following three loops give
an example of this. (Note that the loops are entirely for the purpose of
illustration and are in no way meant to represent a real code.)

DO I=1,N
Y=A(I)
S=S+SQRT(SQRT(SQRT(Y))) ! Automatic Prefetch

ENDDO

DO I=1,N
Y=A(IND(I))
S=S+SQRT(SQRT(SQRT(Y))) ! No Prefetch

ENDDO

DO I=1,N
Y=X
X=A(IND(I+1))
S=S+SQRT(SQRT(SQRT(Y))) ! Hand Coded Prefetch

ENDDO

The array A covers 8 MB, which is too large to fit into the L2 cache.The first
loop accesses data sequentially. The second loop access data randomly with
the statement X=A(IND(I)), where the array IND contains randomly ordered
Performance and Tuning Analysis 101

indices into the array A. The third loop also accesses data randomly, but
prefetches the cache lines with the statement X=A(IND(I+1)).

The number of cycles taken by each iteration of the loops is 97,152, and 99,
respectively.

Comparing the first and second loop shows that the time to fetch a cache line
(including the time to fetch the TLB table entry group), which is incurred by
the second loop, takes approximately 152 - 97 = 55 cycles. Comparing the
third loop with the first and second loops shows that fetching a cache line is
almost entirely overlapped by the computation.

Practical examples of this are harder to achieve because of the previously
mentioned restrictions (7.1, “Relevant Information” on page 87) concerning
the number of operations that may be simultaneously in progress, the
completion order, and the number of completions per cycle.

7.4 Large Stride

For large stride, the effects of the cache and TLB become apparent. These
are discussed in the following sections.

7.4.1 Cache Effects
The time taken to access a double word of data varies considerably with the
loop count and the stride. This was measured by a loop similar to:

REAL*8 A(M,*)
DO J=1,N
S=A(1,J)

ENDDO

where N is the loop count and M is the stride. Actually, the loop was unrolled
by hand and compiled with -O2, since -O3 would have optimized away the
loop completely.

If this loop is iterated many times, then for small loop counts and stride 1, the
data will be in the L1 cache. When the loop count becomes greater then 8K,
the data exceeds the cache size, and the cache is flushed every iteration.

As the stride increases, less data can be kept in the cache, and when the
stride is 16 or greater, one cache line (of 16 double words) is required for
each item of data.
102 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

The L1 cache structure is summarized in 7.1, “Relevant Information” on page
87.

A visual representation of the effects of the L1 cache is shown in Figure 19 on
page 104. Stride goes from left to right from 1 to 300, and loop count goes
from 1 to 600 from top to bottom. The time taken to access data is
represented by the greyness. Light tones represent the fastest access and
dark tones the slowest.

The dark area at the top of Figure 19 represents relatively slow access
because of the overhead of setting up the loop.

Strides of 2, 4, 6, and 10 are slower because of double word interleaving. A
stride of 8 is good because successive alternate words are in different
congruence classes and do not suffer from interleaving.

Strides that are multiples of 32 words perform poorly if the loop count is
higher than 256 because they map to only two of the cache’s four 128-entry
congruence classes.

Strides which are multiples of 64 words are worse if the loop count is higher
than 128 because they map to only one of the one of the cache’s four
128-entry congruence classes.

7.4.2 Translation Lookaside Buffer Effects
The TLB structure is summarized in 7.1, “Relevant Information” on page 87.

A visual representation of the effects of the translation lookaside buffer (TLB)
for a range of strides and loop counts (using the loop described in section
7.4.1, “Cache Effects” on page 102) is shown in Figure 20 on page 105.
Stride goes from left to right from 1 to 96 KB, and the loop count goes from 1
to 300 from top to bottom.

The TLB contains 256 entries and is two-way associative. This means the
entry to resolve the virtual to real address of any 4 KB page can go into just
two slots. Virtual page addresses that are multiples of 512 KB apart must
compete for the same two slots. Thus, a stride of 64 KB will incur a TLB miss
after a loop count of 16, a stride of 32 KB after a loop count of 32, and so on.
This is exactly what is shown by Figure 20.

For other strides, the effect is a good example of chaos theory. Very small
differences in stride have a very large effect on performance. However, the
chaos is actually predictable, and a program that, using the TLB structure
described earlier, recreates the results with remarkable accuracy was written.
Performance and Tuning Analysis 103

Figure 19. Stride versus Loop Count for L1 Cache
104 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

Figure 20. Stride versus Loop Count for TLB
Performance and Tuning Analysis 105

106 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

Chapter 8. Fortran Tuning Guide for Maximum Megaflops

This chapter constitutes the basic Fortran tuning guide for POWER3. It is
intended for Fortran programmers who have relatively little experience of
tuning for IBM RS/6000 RISC architecture, in contrast to Chapter 7,
“Performance and Tuning Analysis” on page 87, which was intended more as
a POWER3 update for programmers already experienced in tuning for
POWER2.

The subject of tuning is covered in much more detail in Optimization and
Tuning Guide for Fortran, C, and C++, SC09-1705. This chapter is,
nevertheless, intended to be complete in itself and to cover that subset of
optimization and tuning techniques for POWER2 and POWER3 that those
working in the field regard as key, together with new material relating to
POWER3.

It is structured as follows:

 • The tuning process

 • Recommended compiler options for performance

 • Architecture-independent hand-tuning review

 • Key aspects of POWER3 architecture:

1. The L1 data cache

2. The L2 data cache

3. The translation lookaside buffer (TLB)

4. The superscalar floating point units (FPUs)

 • Tuning for peak megaflops on POWER3:

1. Avoid the negative. Tune for the data cache and TLB.

2. Exploit the positive. Tune for the superscalar FPUs.

 • Some comments on SMP parallel tuning for POWER3.

8.1 The Tuning Process

The following steps summarize the process, in approximate order of
importance. A short section on each step follows.

1. Consider whether I/O is significant and tune if necessary.

2. Use the best set of compiler optimization flags.
© Copyright IBM Corp. 1998 107

3. Locate the hot-spots in the program.

This step is very important. Do not waste time tuning code that is hardly
ever executed.

4. Use the MASS library for intrinsic function references and code calls to
pre-tuned libraries, such as ESSL where possible. MASS and ESSL are
described in Chapter 5, “Performance Libraries” on page 65.

5. Hand-tune the code.

This is the subject of the remaining sub-sections.

8.1.1 Tuning for I/O
This item is considered first since, if I/O is a significant part of the program, it
may well dominate the overall run time and render CPU tuning unproductive.
Some guidelines for efficient I/O in Fortran are given in the list following the
next paragraph, but the main advice is simply to eliminate or minimize I/O as
much as possible. If I/O is your performance bottleneck, then using the best
hardware and software options (SSA disks, striping over multiple devices and
adaptors, and asynchronous I/O, for example) may be the best tuning option.
A detailed discussion of this is outside the scope of this publication.

Paging is a special case of I/O. You can measure paging rates using vmstat. A
certain amount of paging during start-up or when the program changes from
one phase to another is to be expected. But any measurable paging rate over
a sustained period during program execution is an indication that you are
over-committing memory or are on the edge of doing so. This is likely to
cause serious performance problems. The only solution is to reduce the level
of memory over-commitment. Either tune the program so as to use less
memory - or run on a computer with more memory (or fewer users).

Some guidelines for efficient I/O in Fortran follow:

 • Use long record lengths.

At least 100 KB if possible, preferably 2 MB or more.

 • Prefer Fortran unformatted I/O to formatted.

This reduces binary to decimal conversion overhead.

 • Prefer Fortran direct files to sequential.

This avoids Fortran record length and overflow checking. A Fortran direct
file in AIX is a simple sequential series of data bytes. A Fortran sequential
file has record length indicators at both ends of each record.

 • Reduce the number of calls to the I/O subsystem.
108 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

For example, the following three ways of writing the whole of a 2-D array
to a sequential file differ very considerably in performance. As well as
performing very slowly, Case 3 will create a file almost twice as large as
Case 1 (if A is REAL*8) because of the extra record length indicators.

DIMENSION A(N,N)
.
.

Case 1. Best. 1 record of N*N values.
WRITE(1)A

Case 2. N records, each of N values.
DO I=1,N

WRITE(1)(A(J,I),J=1,N)
ENDDO

Case 3. Worst. N*N records, each of one value.
DO I=1,N
DO J=1,N

WRITE(1)A(J,I)
ENDDO

ENDDO

 • Use asynchronous I/O to overlap computation with I/O activity. This is
newly implemented in XL Fortran Version 5 using the ASYNCH keyword
on OPEN and the WAIT statement.

 • If you write a large temporary file sequentially and need to read through it
again at a later stage in processing, make it a direct access file and then
try to read the end records of the file first. Ideally, read it sequentially
backwards. This is because AIX will automatically use memory to buffer
the file. Assuming the file is larger than memory, after the write is
completed, memory is likely to contain a large number of buffers
corresponding to the last part of the file. If you then read these records,
AIX will supply them to the program from memory without physically
reading the disk. If you read the file forwards, the incoming records from
the front of the file will flush out the in-memory buffers before you reach
them.

8.1.2 Locating the Hot Spots (Profiling)
Profiling tells you how the CPU time used by a program during execution is
distributed over the code. It identifies the active subroutines and loops so that
tuning effort can be applied most effectively.
Fortran Tuning Guide for Maximum Megaflops 109

It is important to understand that a profile relates just to the particular run of
the program for which the profile was obtained. The same program run with
different data will produce a different profile. Some numerically intensive
programs produce very consistent profiles with widely varying sets of input
data. Others produce quite different profiles when the data is changed.

From the point of view of the person tuning the code, the ideal situation is a
consistent profile with very pronounced concentrations of time spent in a few
routines. Tuning effort can then be concentrated on those routines.

The AIX tools available for profiling the programs include:

 • The AIX prof and gprof commands

 • The AIX tprof command

The prof and gprof commands provide profiling at the procedure (subroutine
and function) level. The tprof command uses the AIX trace facility to interrupt
your program at each tick (10 milliseconds) of the AIX CPU clock and
construct a trace table that contains the hardware instruction address
register. At the end of your program execution, tprof creates a report (using
the trace table) showing the number of ticks that relate to each line of your
source code.

To use prof and gprof, do the following:

1. Compile your program with the -p or -pg option in addition to the normal
compiler options

2. Run the program (this produces the gmon.out file)

3. Run prof or gprof by entering prof > filename or gprof > filename

The standard output, filename, of prof will contain the following information:

 • The percentage of the program’s CPU time used by the procedure.

 • The time in seconds required for all references to the procedure.

 • The cumulative total of seconds required for all procedures in the list.

 • The number of times the procedure was called and the time required to
perform each call.

The output of gprof contains all the information provided by prof, and in
addition the timing information of the calling tree for the procedures in the
program.

To use tprof on a program myprog.f, do the following:
110 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

1. Compile your program with the -g option

2. Run tprof on the program: tprof -p myprog -x myprog

This procedure creates two output files, namely __myprog.all and
__t.myprog.f. The first file shows all the processes involved in running your
program and provides a count of the timer ticks associated with each
process. It also lists the percentage of ticks that are associated with the
complete program. The second file is only produced if you compile your
program with the -g option. It is an annotated version of your source file, that
indicates the CPU ticks associated with each line of the source code being
executed.

For more details on how to use prof, gprof, and tprof, see Optimization and
Tuning Guide for Fortran, C, and C++, SC09-1705.

By far the most user-friendly and powerful tool, providing graphically assisted
profiling down to the Fortran or assembler statement level, is Xprofiler, which
is a development of xgprof. Xgprof is an unsupported IBM Internal tool.
Xprofiler is a supported IBM product distributed as part of Parallel
Environment - normally used only for the distributed memory RS/6000 SP. If
you are running on a workstation where PE is not installed, your option is to
use prof, gprof, or tprof.

To use Xprofiler (or xgprof), compile and link as for gprof with

-g -pg

together with -O3 or whatever other optimization you are using. It is important
to use the same optimization options as you will use for production, since
changing the optimization is highly likely to also change the profile.

Then simply run the executable against the chosen test data. This will
produce the standard gmon.out file containing the profiling data. Then run
Xprofiler. Graphics will appear showing the subroutine tree of the program,
with each subroutine represented by a rectangle. The area of each rectangle
is roughly proportional to the CPU time spent in that routine, giving an
immediate visual indication of hot-spot location. Clicking on a rectangle will
produce a set of options, one of which creates a Fortran source code listing
with each statement annotated with the amount of CPU time (in units of 1/100
s) used. This enables the active loops to be easily identified.

8.1.3 Use Pre-tuned Code, Such As ESSL
Do not spend time duplicating tuning work that has already been done. If your
program performs standard functions, such as matrix multiply, equation
Fortran Tuning Guide for Maximum Megaflops 111

solving, other BLAS functions, FFTs, convolution, and so on, then modify your
code to call the equivalent ESSL function. ESSL is described in 5.1, “The
ESSL Library” on page 65, and contains probably the most highly tuned code
available for RS/6000 numerically intensive functions. Other commercially
and publicly available libraries, such as NAG, IMSL, LAPACK, and so on, have
also been tuned for cache-based superscalar architectures.

8.1.4 Hand Tune the Code
Hand tuning is a last resort, since it is likely to require a lot of time and effort.
Nevertheless, the remainder of this Tuning Guide section is devoted to it.

8.2 Recommended Compiler Options

The XL Fortran compiler is constantly improving, and you should beware that
recommendations in this section are likely to become out of date. Currently,
however, the following represents the practical experience of people working
in this field and relates to XL Fortran Version 5.1.

Recommended sets of options are given first, followed by a detailed set of
notes that justify the recommendations.

Recommended set of performance options for POWER3:

-O3 -qarch=pwr3 -qtune=pwr3 [-qcache=auto]

or

-O3 -qstrict -qarch=pwr3 -qtune=pwr3 [-qcache=auto]

 • Only specify -qcache=auto if compiling on POWER3.

 • Use -qstrict if you are worried about non-bitwise identical results.

 • Try -O4 selectively and check to see if performance improves.

 • Consider using -qipa and -Q.

 • Consider using -qfloat=hsflt (but beware that it can be unsafe - see the
notes which follow).

 • Use -O3 -qarch=com -qtune=pwr3 if you want to tune for POWER3 but
have the executable run on other platforms.

The following detailed set of notes explains the reasoning behind these
recommendations:
112 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

 • Unless you are debugging, always use at least the -O2 flag (or -O) (note
that -O1 is not implemented). The performance of unoptimized code will
almost always be very poor and render pointless any hand tuning you
might do.

 • The -O3 option is reliable (in terms of giving correct answers) and usually
(though not absolutely always) gives improved performance over -O2.
Therefore, use it as a matter of course in preference to -O2, unless you
have good reason for believing it to be generating faulty code or degrading
performance. See also the discussion of -qstrict that follows in this list.

 • In the present release of the compiler (Version 5.5.1), the -O4 option is a
short-hand for

-O3 -qhot -qipa -qarch=auto -qtune=auto -qcache=auto

That is, there is no optimization enabled by -O4 that is not given by that
set of options. This may not remain true in future releases.

 • The -qhot (high order transforms) option, implied by -O4, is excellent for
blocking and transforming simple loops for optimum cache and TLB
performance. See 8.4, “Key Aspects of POWER3 (Model 260)
Architecture” on page 119, for a detailed discussion of the data cache and
TLB.

Early experience with XL Fortran Version 5 shows that -qhot is
significantly improved over Version 4. For example, it now does an
excellent job at optimizing untuned matrix multiply coding. However, -qhot
is less successful with more complex loops. Practical experience (with XL
Fortran Version 4) has indicated that, with real production codes, -qhot
degrades performance more often than it improves it. Although improved
in Version 5, -qhot should probably still not be recommended for routine
use. Rather, use it selectively, on key subroutines, after you have verified
by measurement that performance is improved.

 • -qstrict is used with -O3 and higher optimization levels to ensure that
results are obtained that are bitwise identical to those from unoptimized
code (and -O2). To do this, XL Fortran defines a strict computational
ordering based on Fortran’s rules for operator hierarchy and left to right
operation. Without -qstrict, optimization levels above 2 allow such
semantics changes in the interests of performance.

For example, when evaluating the expression

A*B*C + B*C*D

the compiler might recognize that B*C is a common sub-expression and
evaluate it once only. However, -qstrict would inhibit this optimization since
it would violate the left to right ordering rule on A*B*C. In general, (A*B)*C
Fortran Tuning Guide for Maximum Megaflops 113

does not yield a bitwise identical result to A*(B*C). Which is more accurate
- closer to the mathematically exact value - depends on the precise
floating points values involved.)

 • -qarch=pwr3 and options such as -qfloat=hsflt.

The various sub-options of -qfloat (hsflt, hssngl, and so on) are primarily
intended for single precision (REAL*4) operation on POWER2
architecture, and, since this publication is based on POWER3, details will
not given here. Suffice it to say that, for single precision floating point
arithmetic on POWER2, hsflt is the highest performing option but that it is
unsafe since exponent overflow can go undetected and produce wrong
results. The highest performing safe option is -qfloat=hssngl.

However, there is a potentially important compiler optimization (reciprocal
multiply) that is enabled only if -qfloat=hsflt is specified. There is a strong
argument for not making this optimization dependent on an unsafe option,
and the compiler developers are considering a change. The -qfloat=hsflt
option is, however, safe in practice if:

 • You use double precision exclusively (with POWER2 or POWER3), or

 • You specify -qarch=pwr3 and use single precision exclusively (that is,
do not mix single and double), or

 • You can guarantee that no expression will ever have a value outside
the single precision exponent range (about 1.0E-38 through 1.0E+38).

Therefore, if you find that reciprocal multiply is of significant benefit for
your code, you could consider enabling it with hsflt. However, hand-tuning
for reciprocal multiply is usually relatively easy, and this is probably the
better option.

8.3 Architecture Independent Hand Tuning Review

Before giving a detailed description of the performance implications of key
parts of POWER3 (RS/6000 43P 7043 Model 260) architecture, this section
reviews some tuning techniques that have been found to be commonly
effective in a wide range of programs. These techniques could be described
as common sense. They simply do things in a more efficient way: maybe by
reducing the amount of computation to achieve the same result, maybe by
eliminating unnecessary overhead.

Most of these techniques are likely to be effective, whatever hardware
platform the code is run on, in contrast to the architecture dependent
techniques discussed later.
114 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

8.3.1 Basic Coding Practices for Performance
Sections on do’s and don’t’s follow.

8.3.1.1 Good Coding Practices for Performance
Write a clean and straightforward program to enable the compiler to do its
optimization work.

 • Access data sequentially (unit stride), see 8.5.3.1, “Stride Minimization:
Case Study T1” on page 129

 • Keep size of DO-loops manageable

 • Keep common sub-expressions recognizable by the compiler

 • Reduce expensive operations (such as divides, exponentiation, and so on)

 • Minimize IF statements in loops

 • Inline short routines

 • Avoid subroutine calls in loops (give routine its own loop)

 • Do not EQUIVALENCE critical variables

 • Simplify array subscripts

 • Prefer scalar temporaries over scratch arrays

 • Avoid implicit type conversions

 • Keep the number of parameters passed to subroutines and functions small

 • Avoid leading array dimensions equal to a power of two

 • If coding multiple IF tests, evaluate the most likely first

8.3.1.2 Coding Practices to be Avoided
For performance-critical DO-loops, do not do the following:

 • Access data with large stride (see 8.5.3.1, “Stride Minimization: Case
Study T1” on page 129).

 • Create recurrences.

 • Do too few iterations of the loop.

And within performance-critical DO-loops do not use the following:

 • I/O statements

 • Subroutine calls

 • Non-intrinsic function references

 • CHARACTER or LOGICAL assignment statements
Fortran Tuning Guide for Maximum Megaflops 115

 • ASSIGN or ASSIGNED GOTO or computed GOTO

 • GOTO which exits the loop

 • GOTO backwards in the loop

 • PAUSE, RETURN, or STOP

 • Too many or too complex nested IFs

 • Complex loop-dependent array subscripts (induction variables)

 • Non-INTEGER or INTEGER*8 DO-loop variables

 • EQUIVALENCEd data items

 • Non-optimizable data types: LOGICAL*1, BYTE, INTEGER*1,
INTEGER*2, REAL*16, COMPLEX*32, CHARACTER, INTEGER*8 in
32-bit mode

8.3.2 Commonly Occurring Examples
These are some examples of how to correct some inefficient coding practices
that have been repeatedly found in real codes:

Invariant IF float-out

Untuned Tuned
------- -----

DO I=1,N IF(D(J).LE.0.0)THEN
IF(D(J).LE.0.0)X(I)=0.0 DO I=1,N
A(I)=B(I)+C(I)*D(I) A(I)=B(I)+C(I)*D(I)
E(I)=X(I)+F*G(I) X(I)=0.0

ENDDO E(I)=F*G(I)
ENDDO

ELSE
DO I=1,N
A(I)=B(I)+C(I)*D(I)
E(I)=X(I)+F*G(I)

ENDDO
ENDIF

The compiler will recognize that the IF test is invariant but will not generate
two versions of the loop as in the tuned example.

Boundary condition IF testing

Often, you want to do something different for just the first and/or last iteration
of a loop. If the loop is performance-critical, then it is important to treat these
special cases separately and have the main loop without an IF:
116 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

Untuned Tuned
------- -----

DO I=1,N A(1)=B(1)+C(1)*D(1)
IF(I.EQ.1)THEN X(1)=0.0
X(I)=0.0 E(1)=F*G(1)

ELSEIF(I.EQ.N)THEN DO I=2,N-1
X(I)=1.0 A(I)=B(I)+C(I)*D(I)

ENDIF E(I)=X(I)+F*G(I)
A(I)=B(I)+C(I)*D(I) ENDDO
E(I)=X(I)+F*G(I) X(N)=1.0

ENDDO A(N)=B(N)+C(N)*D(N)
E(N)=1.0+F*G(N)

Repeated intrinsic function calculation

In this example, the untuned code calculates the values of SIN(X(J)) N times,
whereas in the tuned code, they are calculated once and saved in a separate
array.

Untuned Tuned
------- -----

DO I=1,N DIMENSION SINX(N)
DO J=1,N .
A(J,I)=B(J,I)*SIN(X(J)) DO J=1,N

ENDDO SINX(J)=SIN(X(J))
ENDDO ENDDO

DO I=1,N
DO J=1,N
A(J,I)=B(J,I)*SINX(J)

ENDDO
ENDDO

Calls to vector merge functions

Codes, typically ported from other systems such, as Cray vector processors,
often make extensive use of the vector merge functions, CVMGM, CVMGN,
CVMGP, CVMGT, and CVMGZ. They were used to avoid IF statements in
loops preventing vectorization. On a non-vector architecture, this is
unnecessary. They are supported by XL Fortran but the overhead of calling
them is usually much greater than executing the equivalent conditional code.
This is particularly true if, for example, CVMGT is called several times with
the same logical condition, as in the following example:

Untuned

DO I=1,N
P(I)=CVMGT(A1(I),A2(I),D(I).LE.0.0)
Fortran Tuning Guide for Maximum Megaflops 117

Q(I)=CVMGT(B1(I),B2(I),D(I).LE.0.0)
R(I)=CVMGT(C1(I),C2(I),D(I).LE.0.0)
S(I)=CVMGT(D1(I),D2(I),D(I).LE.0.0)

ENDDO

Tuned

DO I=1,N
IF(D(I).LE.0.0)THEN
P(I)=A1(I)
Q(I)=B1(I)
R(I)=C1(I)
S(I)=D1(I)

ELSE
P(I)=A2(I)
Q(I)=B2(I)
R(I)=C2(I)
S(I)=D2(I)

ENDIF
ENDDO

Replacing divides by reciprocal multiply

This optimization can sometimes be done automatically by the compiler by
specifying at least -O3 optimization level together with -qfloat=hsflt. However,
the hsflt option can be unsafe in some circumstances, see 8.2,
“Recommended Compiler Options” on page 112.

Since divides are very costly, any loop that divides by the same value more
than once can be easily optimized by taking the reciprocal of the value and
then multiplying by the reciprocal, as in this example:

Untuned Tuned
------- -----

DO I=1,N DO I=1,N
A(I)=B(I)/C(I) OC=1.0/C(I)
P(I)=Q(I)/C(I) A(I)=B(I)*OC

ENDDO P(I)=Q(I)*OC
ENDDO

The following example shows that a similar trick can be done even when two
(or more) different divisors are used:

Untuned Tuned
------- -----

DO I=1,N DO I=1,N
A(I)=B(I)/C(I) OCD=1.0/(C(I)*D(I))
118 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

P(I)=Q(I)/D(I) A(I)=B(I)*OCD*D(I)
ENDDO P(I)=Q(I)*OCD*C(I)

ENDDO

Here, two divides have been replaced by one divide and five multiplies - still a
considerable saving in cycles.

8.4 Key Aspects of POWER3 (Model 260) Architecture

This section covers only those aspects of the architecture that are of the
highest direct relevance to the performance of floating-point-intensive
programs. More details on Model 260 architecture are given in Chapter 2,
“The POWER3 Processor” on page 7.

 • L1 data cache,

 • L2 data cache,

 • translation lookaside buffer (TLB), and

 • the superscalar floating point units (FPUs).

Other aspects of the architecture, such as the instruction cache, can be
significant for some programs but generally much less so than those
considered here.

The way in which you can tune code to take best advantage of the
architecture is the subject of the next section.

8.4.1 The POWER3 (Model 260) Level 1 Data Cache
Memory is buffered by a high speed data cache of 64 KB. Its structure and
the effect of this on performance is considered in the following two
subsections.

8.4.1.1 Structure of the L1 Data Cache
The structure of the Model 260 L1 cache is significantly different from (and,
on the whole, better than) that of the POWER2 cache. There are three
concepts which are key to understanding the cache:

 • Cache lines

Each line is 128 bytes long and is the basic unit of transfer between main
memory and cache.

 • Set-associativity

This is one of the main POWER3/POWER2 differences: the POWER2
cache is 4-way set associative; the POWER3 cache is 128-way.
Fortran Tuning Guide for Maximum Megaflops 119

 • Cache line prefetch

This important feature of POWER3 is not present on POWER2.

These concepts will now be explained in detail.

Cache Lines
Conceptually, memory is sectioned into contiguous 128-byte lines, each one
starting on a cache-line boundary whose hardware address is a multiple of
128. The cache is similarly sectioned and all data transfer between cache and
memory is in units of these lines.

If, for example, a particular floating point number is required to be copied
(loaded) into a floating point register so that computation may be done with it,
then the whole cache line containing that number is transferred from memory
to cache.

Set Associativity
The L1 data cache is mapped onto memory, as shown in Figure 21, which
shows the L1 cache on POWER2, and Figure 22, which shows the same for
POWER3. Each column in one of the diagrams is called a congruence class,
and any particular line from memory may only be loaded into a cache line in
the same congruence class and for POWER2 into one of only 4 locations; for
POWER3 into one of 128 locations.

Figure 21. The 4-Way Set-Associative POWER2 Data Cache
120 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

Figure 22. The 128-Way Set-Associative POWER3 Data Cache

Generally, when a new line from memory is loaded into the cache, existing
data must be displaced. If the previous contents of the line have been
modified, the line must be stored back into memory. The algorithm used by
the hardware for selecting which cache line to use is an approximation of
Least Recently Used on POWER2 and is round-robin on POWER3.

The set associative structure of the cache can lead to a reduction in its
effective size. Suppose successive data elements are being processed that
are regularly spaced in memory (that is with a constant stride). With the
POWER2 cache, the worst case is when the stride is exactly 16 KB or a
multiple of 16 KB. In this case, all elements will lie in the same congruence
class and the effective cache size will be only four lines. This effect happens
with strides that are a multiple of a power of 2.

The POWER3 cache, with its much greater degree of set associativity, is
much less susceptible to this problem than the POWER2 cache. Strides of
multiples of 1024 bytes will cause all the data to be in the same congruence
class but will only cause a reduction in apparent cache size of a factor of 4.
Fortran Tuning Guide for Maximum Megaflops 121

Odd multiples of 512 will halve the effective size. This is minor compared with
the possible reduction by a factor of 128 on POWER2. See also 7.4, “Large
Stride” on page 102.

8.4.1.2 Effects of L1 Cache Misses on Performance
You can estimate the effects of cache misses on performance with the
following approximate rules for POWER3 (Model 260):

 • A load instruction (from memory to a floating point register) takes one
cycle if the data is in the cache.

(On a 200 MHz (cycles per second) Model 260, a cycle is 5 ns.)

 • If the data is in L2 cache, it takes six or seven cycles.

 • If the data is in memory only, it takes about 36 cycles. That is, the cost of a
cache miss to memory is 35 additional cycles.

 • Following the initial 35 cycle delay, forward sequentially accessed items in
the same cache line may be loaded in a further one cycle each.

 • The same timing applies to storing data from registers into memory. If the
store is into a previously unreferenced line, the complete line must be
fetched from memory first before the new value can be stored into it.

 • If a cache line is overwritten by newly accessed data, then, if the data from
the old line is needed again, it must be reloaded and another cache miss
taken.

Cache Line Prefetch
Because of the relatively large number of cycles needed for a cache miss,
POWER3 has a mechanism for mitigating the performance impact for
sequentially accessed data. For up to four streams of data, the hardware
attempts to detect sequential access and initiates the loading of subsequent
lines in parallel, so they stream into the cache behind the first line without
waiting for the miss to occur. The beneficial effects of this on performance are
discussed in 7.3.1, “Copy” on page 95.

8.4.2 The POWER3 (Model 260) Level 2 Data Cache
On the Model 260, the L2 data cache is 4 MB in size. For
numerically-intensive applications, it is likely to be of less importance than the
L1 cache. The following points summarize the operation of the L2 cache:

 • Data in the L1 cache may or may not also be in L2.

 • Data loaded into L1 by the pre-fetch mechanism does not go into L2.

 • Data loaded into L1 other than by pre-fetch (that is as a result of an L1
cache-miss) also goes into L2.
122 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

 • An L1 cache miss costs only about six or seven cycles if the data is in the
L2 cache compared with 35 cycles if it is not.

8.4.3 The Translation Lookaside Buffer (TLB)
Virtual storage constitutes the addressable memory space used by the AIX
system. This linear contiguous address space is mapped, by a combination of
hardware and software, onto the hardware memory (real storage) of the
computer and onto paging spaces held on disk. If the amount of memory
used by the system is greater than can be held in real storage, the paging
mechanism of AIX will automatically cause transfers, as needed, between
real storage and disk in units of 4 KB pages.

It is important to understand that the TLB has nothing to do with paging. As
will be explained, TLB misses can and do occur with pages that are already in
real storage.

For a 1 MB subset of pages in real storage, the translation lookaside buffer
(TLB) holds the correspondence between virtual storage addresses and real
storage addresses.

If the address of a page is held in the TLB, no additional delay occurs when
data within the page is accessed. Otherwise, a TLB miss occurs. (An L1
cache miss may or may not occur at the same time.) The virtual/real address
of the page is then resolved using the page and segment tables (held in real
memory) and this is placed in the TLB, overwriting an existing entry on a least
recently used basis.

The cost of a TLB miss varies between about 25 cycles if the relevant parts of
the page and segment tables are in L2 cache, to possibly hundreds of cycles
in unfavorable cases.

The POWER3 TLB has a total 256 entries, and therefore, addresses only 1
MB of memory. This is the same as on POWER2.

The TLB is 2-way set associative. Therefore, an application accessing data
with a stride of exactly 512 KB (or a multiple) would see a TLB with only two
entries. Arguably, such a stride would be even less likely to occur in practice
than strides which can cause trouble with the POWER2 data cache.

8.4.4 The Superscalar Floating Point Units and Peak Megaflops
The peak rate of a single 200 MHz Model 260 processor is 800 MFLOPS (that
is, four flops per machine cycle).
Fortran Tuning Guide for Maximum Megaflops 123

Approaching this rate in practice is only possible if delays due to the caches
and the TLB have been eliminated. This section is therefore about what is
normally called in cache performance but really should be in L1 cache and
TLB performance. (It is possible to construct programs that operate in L1
cache but out of TLB.)

Fixed point (integer) arithmetic is done by separate fixed point units. Although
some applications (such as signal processing) make extensive use of integer
arithmetic, this is not considered in detail here.

8.4.4.1 FPU Performance Guide
The following key facts summarize the way the FPUs perform:

 • A single Model 260 processor has two FPUs (connected to a single L1
cache) that can operate independently in parallel.

 • The two FPUs see only floating point registers. There are 32 architected
registers plus 24 rename registers that may substitute for an architected
register through a hardware process known as renaming. These 56
registers serve both FPUs. They all have 64 bits.

 • Floating point computation is carried out only with data in these registers.

 • Data is copied into the registers from the L1 cache (loaded) and copied
back to the L1 cache (stored) by two load/store units. (This is different
from POWER2 architecture where floating point load/stores were done by
the fixed point unit.)

 • For in cache (and in TLB) data, a load or store of one floating point double
precision (REAL*8) variable takes one cycle. (On POWER2, it was
possible to load a quad-word (two adjacent double precision variables) in
one cycle.)

 • The load/store units operate independently, except that two stores cannot
take place in one cycle. Two loads, or a load and a store, can take place in
one cycle.

 • Single precision (REAL*4) variables are loaded into separate registers
(using only half their capacity) and each load takes one cycle as with
double precision.

 • The basic computational floating point instruction is a double precision
multiply add, with variants multiply/subtract, negative multiply/add, and
negative multiply/subtract. There are also single precision variants in
POWER3 architecture (unlike POWER2).

 • A single add, subtract, or multiply (not divide) is done using the same
hardware as a multiply/add and takes the same amount of time. A
124 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

multiply/add counts as two floating point operations, so that, for example,
a program doing only additions might run at half the megaflops rate of one
doing alternate multiplies and adds.

 • The assembler acronym for the double precision floating-point multiply/add
is FMA. This term will be used extensively as a shorthand for any of the
variants of this basic floating point instruction.

 • The computational part of an FMA takes three or four cycles.

 • The worst case would be a sequence of wholly dependent 4-cycle FMAs
(where a result of one FMA is needed by the next) where only one of the
FPUs would be active. This would run at the rate of one FMA per four
cycles, as shown in the upper part of Figure 23. If there were two
independent streams of dependent FMAs, this could use both FPUs.

Figure 23. POWER3 Floating Point Unit - Superscalar Pipeline
Fortran Tuning Guide for Maximum Megaflops 125

 • A sequence of independent FMAs, however, can be pipelined as shown in
the lower part of Figure 23, and the throughput can then approach the
peak rate of two FMAs per cycle.

 • Divides are very costly and take about 18 cycles. Divides cannot be
pipelined (either with another divide or with FMAs).

 • A fundamental aspect of RISC architecture is that the functional units can
run independently. Therefore, FMAs can run in parallel with load/stores
and other functions.

8.4.4.2 Conditions for Approaching Peak Megaflops
When considering a numerically intensive loop, the following applies to the
instruction stream within the loop:

 • Operate solely within L1 cache and TLB.

 • No divides (or square roots or function calls and so on).

 • Multiplies must be paired with adds or subtracts so that each FMA is two
flops.

 • FMAs must be independent (and at least eight in number to keep two
pipes of depth four going).

 • The loop should be FMA-bound. That is, cycles needed for instructions
other than FMAs (mainly load/stores) should be less than that needed for
FMAs so that they can be overlapped with FMAs and effectively hidden. In
principle, they could be equal to the FMA cycles, but, in practice, peak
performance is approached most easily if they are less.

8.5 Tuning for Floating Point Performance on POWER3 (Model 260)

Tuning strategy can be summarized as follows and should be done in the
following order:

1. Avoid the negative.

Code so as to avoid cache and TLB misses.

2. Exploit the positive.

Code so as to achieve pipelined FMA operation in the FPUs.

The techniques for achieving these two things are quite different and are
discussed in the two sections which follow an introductory section on the
automatic optimization obtainable from the compiler.
126 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

8.5.1 Letting the Compiler Do the Tuning
The ability of the compiler to optimize (or, effectively, tune) untuned code is
improving with each new release, and it is becoming increasingly difficult to
find simple examples of loops that require hand tuning to perform well.

Advice about which techniques should be done by hand is broadly:

1. If the compiler does it for you at -O3, do not bother.

2. If the compiler needs -O4 (or -qhot) to do it, probably it is worth doing
yourself - for two reasons:

 • -qhot may slow down other more complex loops in the same routine.

 • The performance characteristics of the hand tuned code will be stable,
that is, not dependent on the way in which the advanced capabilities of
the compiler vary from release to release.

3. If the compiler will not do it at all, you’ve no option.

The remaining two sections include a series of case studies. The purpose of
these is both to explain the principles behind tuning and to provide examples
of how to go about it. In purely explanatory cases (where it is not worth hand
tuning because the compiler does it well at -O3), the behavior of untuned and
tuned code is generally illustrated by using the -O2 optimization level.

8.5.2 Getting and Understanding an Object Code Listing
Most tuning can be done without ever looking at an object code listing
generated by the compiler but, often, it is essential for understanding why a
particular tuning action does not seem to be working as expected.

Understanding just enough about object code to make sense of floating
point-intensive loops is quite easy and well worth while. (It is, incidentally,
possible for the compiler, to produce an assembler language source file by
using the -S flag. This may then be edited and re-assembled by the compiler.
No further discussion of this is included here.)

To generate a listing, compile with -qsource -qlist. The listing will then be
found in the.lst file. If you compile at optimization level -O2, then the object
code for the loop should map on to the Fortran source directly and be easily
understandable. An extract from such a listing follows. At higher optimization
levels, the listing will be more complex and difficult to understand.

Extract from sample.lst generated with the command
xlf -c -qsource -qlist -O2 sample.f

Fortran Tuning Guide for Maximum Megaflops 127

>>>>> SOURCE SECTION <<<<<
 1 | SUBROUTINE SAMPLE(A,B,C,S,N)
 2 | IMPLICIT REAL*8(A-H,O-Z)
 3 | DIMENSION A(N),B(N),C(N)
 4 | S=0.0D0
 5 | DO I=1,N
 6 | A(I)=X/C(I)
 7 | S=S + A(I)*B(I)
 8 | ENDDO
 9 | END

>>>>> OBJECT SECTION <<<<<
.
.

5| CL.0:
6| 000030 lfdu CC450008 1 LFDU fp2,gr5=c(gr5,8)
6| 000034 fdiv FC411024 15 DFL fp2=fp1,fp2,fcr
7| 000038 lfdu CC640008 0 LFDU fp3,gr4=b(gr4,8)
6| 00003C stfdu DC430008 0 STFDU gr3,a(gr3,8)=fp2
7| 000040 fmadd FC0200FA 3 FMA fp0=fp0,fp2,fp3,fcr
8| 000044 bc 4200FFEC 0 BCT ctr=CL.0,
7| 000048 stfd D8060000 0 STFL s(gr6,0)=fp0

The following points explain how to use the listing:

 • The object code shown is just the subset of the complete listing that
includes the DO-loop. To locate the loop:

1. Note the numbers of the source statements that comprise the loop (5 -
8 in this case).

2. Look for a BCT (branch on count) statement that loops back to a label
(CL.0 in this case) where the numbers of the included object code
statements is the same as in the Fortran source. Note that references
to statements within the source loop are often found also outside the
object code loop. These should be ignored: you need to find the BCT
branching back to a label.

Beware also that at -O3 and above, you may sometimes find a BCT at
the end of a tidy-up loop as well as the main loop.

 • The first statement in the loop is an LFDU statement. LFD means load
float double. The U indicates that the address registers are automatically
updated for the next loop iteration. This statement loads C(I) into fp2
(floating point register 2). You can tell it is an element of C that is being
loaded from the c(gr5,8) part of the statement.
128 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

 • The number to the left of the mnemonic (1 against the LFDU, 15 against
the following DFL) is the compiler’s estimate of the number of cycles
needed for the statement (within a single FPU). A zero means that the
instruction can be overlapped with previously listed instructions.

 • Then comes a DFL (divide float). This computes X/C(I). Since X is a
scalar, it is loaded once before the loop starts (into fp1) and does not
appear inside the loop.

 • Then comes another LFDU (loading B(I)), followed by an STFDU (store
float double with update), which stores the result of X/C(I) into A(I).

 • Then comes the FMA (floating point multiply/add) that computes
S+A(I)*B(I). Note that S is neither loaded nor stored within the loop. It was
loaded into fp0 before the loop and can be seen to be stored immediately
after the final BCT of the loop.

 • Note also that it was not necessary to load A(I) for this statement because
the value was already present in fp2.

8.5.3 Tuning for the L1 Cache
Generally speaking, if you successfully tune so as to work in the L1 cache,
you will also be working in the TLB. This is by no means always true but a
discussion of tuning specifically for the TLB is beyond the scope of this
publication.

There are two basic techniques for tuning for the L1 cache:

1. Stride minimization - stride 1 (sequential processing) being the goal, and

2. Blocking (also known as strip mining), whereby data is processed in
blocks that fit in the cache.

Of these two, stride minimization is by far the most important.

8.5.3.1 Stride Minimization: Case Study T1
The stride of an array in a Fortran DO-loop refers to the way in which the
referenced array elements are laid out in memory and is equal to the
difference in address of successive elements. For indirectly addressed data,
stride may be variable. For negatively incremented loops, stride is negative.

While stride can be measured in bytes, it is more usual to use units equal to
the size of a data item. Thus, with double precision data, each element is 8
bytes long, so that a stride of 3 would be 24 bytes.

The following example illustrates stride. In understanding the examples with
nested loops and multi-dimensional arrays, remember that:
Fortran Tuning Guide for Maximum Megaflops 129

1. It is the inner loop that determines the stride (assuming the compiler does
not invert the loops).

2. Fortran arrays are laid out in memory in column major order, so that stride
1 processing is obtained by varying the left most subscript most rapidly.

DO I=1,N
A(I)....... Stride 1
A(I+4)..... Stride 1
A(2*I)..... Stride 2

DO I=1,N,3
A(I)....... Stride 3

DO I=N,1,-2
A(2*I)...... Stride -4

DIMENSION A(100,50)
.

DO I=1,L Triply nested loop
DO J=1,M
DO K=1,N
A(K,J).. Stride 1
A(J,K).. Stride 100
A(J,I).. No stride. A(J,I) is a scalar (a single

value) in the inner loop since J and I
stay constant.

The effect of stride on performance is clearly shown by the following case
study.

Case Study T1

Untuned Tuned
------- -----

DIMENSION A(N,N),B(N,N),C(N,N) DIMENSION A(N,N),B(N,N),C(N,N)
. .

DO I=1,N DO J=1,N
DO J=1,N DO I=1,N
C(I,J)=C(I,J)+A(I,J)*B(I,J) C(I,J)=C(I,J)+A(I,J)*B(I,J)

ENDDO ENDDO
ENDDO ENDDO

Stride N on inner loop Stride 1 on inner loop
---------------------- ----------------------
130 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

Table 17 shows the way in which performance varies as N is increased for
compiler optimization levels 2, 3, with and without -qhot. The maximum
theoretical in-cache performance for this loop is 200 MFLOPS.

Table 17. Case Study T1: Performance of Tuned and Untuned Code

The timing program used to obtain these numbers executed this code within
an outer iteration loop. Therefore, for small arrays (small values of N), these
figures represent in-cache performance.

The following conclusions may be drawn:

1. The effect of executing with bad stride can be very serious.

This is shown in the untuned -O2 and -O3 lines of the table where the
performance with 1000x1000 arrays is 88 times worse than the in-cache
performance. This is much worse than the 35x degradation that you would
expect simply if every number referenced were a cache miss. TLB misses,
in addition to cache misses, are the explanation.

2. Even with stride 1 processing, performance degrades (by somewhat more
than a factor of 2) as the arrays become large.

3. As expected (since loop interchange is a function of -qhot), -O3 does not
fix the problem.

N 20 50 100 150 200 300 500 1000

Untuned (MFLOPS)

-O2 158 141 116 65.6 9.7 4.51 2.37 1.81

-O3 131 177 108 67.2 11.4 4.59 2.50 1.83

-O3 -qhot 154 147 146 143 117 103 88.6 80.3

-O2 -qhot 160 123 142 131 97.3 102 88.8 77.4

Tuned (MFLOPS)

-O2 158 123 141 130 96.9 101 84.7 77.2

-O3 171 147 147 147 115 102 89.1 79.4

-O3 -qhot 154 147 143 150 119 102 88.6 80.2

-O2 -qhot 159 123 124 116 90.9 87.8 86.3 77.0
Fortran Tuning Guide for Maximum Megaflops 131

4. With this simple example, -qhot (even when used only with -O2) fixes the
problem essentially perfectly. (The bottom two lines for untuned code are
more or less the same as for tuned code.)

Should you hand tune?

Yes.

Getting the DO-loops in the correct order so that the inner loop is stride 1 is
such a basic easy tuning action that it really should be done. Not only does it
mean that you are not forced to use -qhot (which might slow down other
loops) but the code will also run much faster on other cache-based hardware
platforms that do not boast such a powerful compiler as XL Fortran.

Of course, it is not always possible to structure the code so that all arrays are
accessed stride 1. In that case, blocking may be essential to avoid serious
performance problems.

8.5.3.2 Blocking: Case Study T2
The idea behind blocking is simple: process the data in small enough chunks
that they fit in the cache.

There are two reasons for blocking large arrays:

1. If some arrays must be processed with a large stride.

2. If the data values are used many times.

In this case, you want to do as many computations as possible with the
data while it is in the cache and before it is flushed out by more recently
accessed lines. This applies even if everything is stride 1, although the
benefit here is limited to recovering the stride 1 degradation factor of
about a factor of 2.

If neither of the above conditions is true, there is no point in blocking.

The following code illustrates the point:

All stride 1. No data re-use. No point in blocking.
--

DO J=1,N
DO I=1,N
S = S + A(I,J)*B(I,J)

ENDDO
ENDDO

Unavoidable bad stride. No data re-use. (Case Study T2.)
132 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

DO J=1,N
DO I=1,N
S = S + A(I,J)*B(J,I)

ENDDO
ENDDO

All stride 1. Much data re-use. Matrix Multiply transpose.

DO I=1,N
DO J=1,N
DO K=1,N
C(J,I) = C(J,I) + A(K,J)*B(K,I)

ENDDO
 ENDDO
ENDDO

Unavoidable bad stride and much data re-use. Matrix Multiply.

DO I=1,N
DO J=1,N
DO K=1,N
C(J,I) = C(J,I) + A(J,K)*B(K,I)

ENDDO
 ENDDO
ENDDO

The last two cases above are essentially the same as the first two except for
the extra loop on the outside. This causes each data value to be used N times
rather than once.

Matrix multiply is discussed in detail in 9.3, “Case Study: Matrix
Multiplication” on page 151.

Case Study T2

Untuned code

DO J=1,N
DO I=1,N
S = S + A(I,J)*B(J,I)

ENDDO
ENDDO

Tuned (blocked) code

DO JJ=1,N,NB
Fortran Tuning Guide for Maximum Megaflops 133

DO II=1,N,NB
DO J=JJ,MIN(N,JJ+NB-1)
DO I=II,MIN(N,II+NB-1)
S = S + A(I,J)*B(J,I)

ENDDO
ENDDO
ENDDO

ENDDO

Table 18 shows the performance of this code. The maximum theoretical
in-cache performance of this loop is 400 MFLOPS on a Model 260.

Table 18. Case Study T2: Performance of Untuned and Tuned Code

As before, the timing program used to obtain these numbers executed this
code within an outer iteration loop. The small values of N, therefore, represent
in-cache performance. They are included only to show the dramatic effect of
the bad stride as N increases.

The following conclusions may be drawn. In all cases, look only at the
N=1600 column, since the whole point of this loop is what happens with big
matrices and hence big strides.

1. Again, the compiler is capable of tuning this loop, but this time, both -O3
and -qhot are needed (or -O4) before the untuned code will perform
reasonably.

2. The tuned (blocked) code performs reasonably with all compiler options.

N 40 80 320 800 1600

Untuned (MFLOPS)

-O2 134 121 22.0 7.23 5.31

-O3 303 208 20.5 7.45 5.35

-O3 -qhot 333 174 64.3 50.8 46.4

-O2 -qhot 132 112 22.3 7.16 5.33

Tuned (MFLOPS)

-O2 129 89.3 49.4 38.1 34.9

-O3 129 96.7 49.7 38.6 35.3

-O3 -qhot 303 182 65.8 48.6 48.6

-O2 -qhot 129 105 54.5 40.1 35.6
134 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

3. Even in the best case, the degradation compared with small matrices is
substantial, the rate being about a factor of 6 below in-cache performance.

This is a direct consequence of the fact that there is no data re-use.
Before the loops are executed, none of the data is in cache or addressed
by the TLB. Therefore, both cache and TLB misses are taken as the
arrays are used. What the blocking does is to prevent these misses being
unnecessarily taken multiple times.

With data re-use, blocking is considerably more successful, as in 9.3, “Case
Study: Matrix Multiplication” on page 151. Here, rates in excess of 600
MFLOPS are achieved even for large matrices.

Should you hand-tune?

Probably.

If your code is performance-critical and is of the form that needs blocking,
then either you or the compiler must block it. Check whether the compiler is
doing it for you (that is, does -O4 give a substantial boost to the loop over
-O3). If the compiler is doing it, well and good. However, make sure that -O4
is not slowing down other loops in the same routine.

But the real benefit of hand tuning is that you will have a much more stable
situation since the performance of the code will not be dependent on a
particular compiler option whose characteristics might change with future
compiler releases.

8.5.4 Tuning for the CPU
This section discusses tuning code that is running in L1 data cache and in
TLB. The examples given here should be regarded as kernels which, for
in-cache performance would be embedded in outer loops in a real code. For
example, Case Study T15 is a 2-D kernel which, when embedded in an outer
loop, gives matrix multiply coding.

For present purposes, these kernels are simply imbedded in an outer iteration
loop to show in-cache performance. All timings are for small matrices that fit
in the cache.

8.5.4.1 Calculating Theoretical Performance for Simple Loops
For a simple nest of loops (not including function references), it is easy to
calculate the theoretical maximum in-cache performance on a Model 260.
Fortran Tuning Guide for Maximum Megaflops 135

First, let us do it assuming that the compiler does no loop rearranging or
unrolling - what happens in practice with -O2:

1. Look only at the inner loop.

2. Count the number of loads (array elements to the right of an equals sign)
and stores (array elements to the left of an equals sign) in the loop. Count
only array elements that depend on the DO-loop variable. Do not count
scalars. For example,

DO I=1,N
DO J=1,N
A(J) = A(J) * (DEF + B(I)*C(J))
X(I) = X(I) + PQR*C(J)

ENDDO
ENDDO

Count one store (for A(J)) and two loads (for A(J) and C(J)) for this loop.
B(I) and X(I) are scalars since they do not depend on the inner loop index,
J. DEF and PQR are explicit scalars. And C(J), although referenced twice,
only needs to be loaded once. This loop, therefore, needs 3 load/stores.

3. Count the number of FMAs needed. Count one for each +* or -* pair you
can find plus one for all unpaired + or - or *. The above loop would need 3
FMAs (there is one unpaired *).

4. Count the number of divides.

5. Count the number of flops (arithmetic operators ignoring brackets). There
are 5 in the above loop.

Then:

 • Cycles for loads/stores simply equals the number of load/stores.

 • Cycles for computation equals the number of FMAs plus about 18 times
the number of divides.

Since, in general, load/stores can be overlapped with computation, the cycles
for the loop is whichever of these is greater. If cycles for load/stores is greater
than for FMAs, the loop is load/store-bound; if cycles for FMAs is greater, it is
FMA-bound; if they are equal, it is balanced.

There are two CPUs that operate independently at 200 MHz, so the peak
theoretical megaflops rate is 400*F/C, where F is the number of flops in the
loop, and C is the number of cycles you estimate.
136 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

8.5.4.2 Basic In-Cache Tuning Techniques: (Case Study T3)
In practice, the performance of the loop will depend also on how successful
you are (or the compiler is) at arranging for sufficient independent FMAs to be
present in the loop to allow the superscalar pipeline to operate. This will be
illustrated with the following case study. The primary purpose of this is
explanatory, so the -O2 compiler option will be used.

Case study T3

DO I=1,N
S = S + W*A(I) + X*B(I) + Y*C(I) + Z*D(I)

ENDDO

Measured speed at 200 MHz with -O2 = 133 MFLOPS

Theoretically, the loop is balanced: 4 load/stores and 4 FMAs needed. Since
all +* operators are paired, the peak theoretical speed is 800 MFLOPS on the
200 MHz Model 260 - compared with a measured value of 133 MFLOPS at
-O2.

The reason is that, at -O2 (which implies -qstrict), the compiler observes a
strict left to right computation ordering. Hence the FMA that computes "...+
X*B(I)" requires as input the result of "S + W*A(I)"; that is, it is dependent on
it. All FMAs in the computation are dependent, and therefore, cannot be
pipelined. This is even true from one iteration to the next since the expression
uses the same reduction variable, S, as was computed in the previous
iteration. Furthermore, because there are never any independent FMAs, only
one FPU can be active. Dependent FMAs within a single FPU can execute
one every three cycles (rather than the 4 normally assumed). Therefore, one
iteration of the loop takes 12 cycles. Since there are 8 flops in the loop, the
theoretical rate comes down to 200*8/12=133.33 MFLOPS - as measured.

So it is necessary to introduce independent FMAs.

T3A T3B
--- ---

DO I=1,N DO I=1,N
S = S + W*A(I) S1 = S1 + W*A(I)
S = S + X*B(I) S2 = S2 + X*B(I)
S = S + Y*C(I) S3 = S3 + Y*C(I)
S = S + Z*D(I) S4 = S4 + Z*D(I)

ENDDO ENDDO
S = S1 + S2 + S3 + S4

Measured at -O2: 133 MFLOPS 526 MFLOPS
Fortran Tuning Guide for Maximum Megaflops 137

Note, first, that T3A fails to remove the dependency, since each statement in
the loop uses the same reduction variable, so that it still goes at 133
MFLOPS. The T3B case, however, makes the 4 FMAs in the loop
independent and gives an immediate 4-fold performance increase (at -O2).
(Note that 526 MFLOPS is almost exactly 2/3 of the 800 MFLOPS peak - too
exact to be a coincidence - but also too difficult to explain in detail.)

But clearly, more independent FMAs are need to keep both FPU pipelines
busy. So, let’s unroll the loop - to depth 4, say.

T3C

IODD = MOD(N,4)
DO I=1,IODD
S00 = S00 + W*A(I) + X*B(I) + Y*C(I) + Z*D(I)

ENDDO
DO I = IODD+1, N, 4
S10 = S10 + W*A(I)
S20 = S20 + X*B(I)
S30 = S30 + Y*C(I)
S40 = S40 + Z*D(I)
S11 = S11 + W*A(I+1)
S21 = S21 + X*B(I+1)
S31 = S31 + Y*C(I+1)
S41 = S41 + Z*D(I+1)
S12 = S12 + W*A(I+2)
S22 = S22 + X*B(I+2)
S32 = S32 + Y*C(I+2)
S42 = S42 + Z*D(I+2)
S13 = S13 + W*A(I+3)
S23 = S23 + X*B(I+3)
S33 = S33 + Y*C(I+3)
S43 = S43 + Z*D(I+3)

ENDDO
S = S10 + S20 + S30 + S40 + S11 + S21 + S31 + S41 +

& S12 + S22 + S32 + S42 + S13 + S23 + S33 + S43

Measured at -O2: 714 MFLOPS

As can be seen, the process of unrolling to depth N involves processing the
loop in batches of N iterations with an extra small loop at the start (or end) to
tidy up odd iterations. Unrolling is artificial and messy. It is vital for maximum
megaflops - but, fortunately, at -O3, the compiler is excellent at doing it for
you.

Possible reasons why T3C is still slightly short of 800 MFLOPS are:
138 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

 • Interference between loads and FMAs (the loop is balanced: it is easier to
approach the peak if a loop is FMA-bound), or

 • Possible interleaving conflicts on the loads.

 • Overhead for tidy-up loop and summation of S.

Whatever the reason, this result reflects a general observation that it seems
more difficult to approach the peak on POWER3 than it is on P2SC. Although
some kernels do go in excess of 790 MFLOPS, generally, most loops struggle
to exceed 700.

How does the compiler do?

Table 19 shows the performance with various compiler options and code
versions:

Table 19. Performance of Case Study T3

Note that on the hand-tuned code, T3C, -O4 causes a slow down.

Should you hand-tune?

Well, on the original code, even -O4 only gives you 606 MFLOPS. It is
disappointing that the easy hand-coding in T3B does not work well with -O3
since -O3 is usually good at unrolling. The problem here is that -O3 does not
introduce additional reduction variables so that dependencies remain.

The most stable situation, as before, is to do it yourself and use -O3.

8.5.4.3 Making a Load/Store-Bound Loop FMA-Bound
First, for illustration, here is a loop that is firmly load/store-bound and cannot
be made FMA-bound:

DO I = 1,N
A(I) = B(I) + C(I)*D(I)

ENDDO

This needs four cycles for the load/stores. There is only one FMA; so even if
this operates dependently at four cycles, it should overlap with the
load/stores. Unrolling and so on might reduce the cycles needed for the

Coding MFLOPS at -O2 MFLOPS at -O3 MFLOPS at -O4

T3 133 133 606

T3B 526 400 714

T3C 714 714 625
Fortran Tuning Guide for Maximum Megaflops 139

FMAs but nothing can reduce the four cycles for the load/stores. Therefore,
with two flops in the loop, the peak theoretical performance is 400*2/4 = 200
MFLOPS.

Table 20 shows the measured performance. And, as can be seen, no amount
of unrolling that -O4 might do can speed this up.

Table 20. Performance of Load/Store Bound Loop.

Case Study T4
However, some nests of loops can be transformed so as to change the
load/store - FMA balance. The following example, T3, is one that the compiler
will not do, even at -O4.

T4
--

DO I = 1,N
DO J = 1,N
Y(I) = Y(I) + X(J)*A(J,I)

ENDDO
ENDDO

Measured MFLOPS on 200 MHz at -O2 -O3 -O4
138 328 385

Note that the loop is already well-structured in that the inner loop both has
stride 1 and is a sum-reduction (Y(I) is a scalar).

The theoretical calculation for the inner loop gives 400 MFLOPS (2 loads for
X(J) and A(J,I) and 1 FMA - loop is load/store-bound). The -O4 option nearly
achieves this and -O3 also does quite well. -O2 suffers, as before, from each
iteration of J being dependent on the previous one through the scalar value
Y(I).

Reversing the order of the loops would make matters worse. Then we would
have 3 load/stores instead of 2. Also A(J,I) would be accessed with bad
stride. For in-cache operation, this might not be a problem, but could become
a serious problem if the arrays became larger.

The trick to make the loop less load/store-bound is to keep the order of the
loops the same but to unroll the outer loop. (Tidy-up code is omitted.)

MFLOPS at -O2 MFLOPS at -O3 MFLOPS at -O4

196 196 196
140 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

T4A

DO I = 1, N, 8
DO J = 1, N
Y(I) = Y(I) + X(J)*A(J,I)
Y(I+1) = Y(I+1) + X(J)*A(J,I+1)
Y(I+2) = Y(I+2) + X(J)*A(J,I+2)
Y(I+3) = Y(I+3) + X(J)*A(J,I+3)
Y(I+4) = Y(I+4) + X(J)*A(J,I+4)
Y(I+5) = Y(I+5) + X(J)*A(J,I+5)
Y(I+6) = Y(I+6) + X(J)*A(J,I+6)
Y(I+7) = Y(I+7) + X(J)*A(J,I+7)

ENDDO
ENDDO

Measured MFLOPS on 200 MHz at -O2 -O3 -O4
149 157 606

The point is that X(J) is now re-used seven times in the loop. Each iteration of
the loop needs nine load/stores and eight FMAs for 16 flops. It is still
load/store-bound but only just. Unrolling more would help slightly - it would
asymptotically become balanced as the unrolling depth increases. For depth
8, as shown, theoretical performance is 400*16/9 = 711 MFLOPS.

The measured performance is shown below the code listing. With -O4, it’s
reasonably close to the theoretical value - but why does -O2 only go at 149
MFLOPS? There are eight independent FMAs in the loop; so there seems no
reason for this. To find out why, it is necessary to study the assembler listing
obtained with -qsource -qlist (from the V5.1.1 compiler at -O2):

Extract from T4A.lst file, XLFV5.5 at -O2 level

16| CL.6:
17| 000128 lfdu CC950008 1 LFDU fp4,gr21=c(gr21,8)
18| 00012C lfdu CC760008 1 LFDU fp3,gr22=c(gr22,8)
17| 000130 lfdu CC340008 1 LFDU fp1,gr20=b(gr20,8)
18| 000134 lfd C8430000 1 LFL fp2=a(gr3,0)
19| 000138 lfdu CCD70008 1 LFDU fp6,gr23=c(gr23,8)
20| 00013C lfdu CD380008 1 LFDU fp9,gr24=c(gr24,8)
19| 000140 lfd C8A30008 1 LFL fp5=a(gr3,8)
20| 000144 lfd C9030010 1 LFL fp8=a(gr3,16)
18| 000148 fmadd FC4110FA 1 FMA fp2=fp2,fp1,fp3,fcr
21| 00014C lfd C8630018 1 LFL fp3=a(gr3,24)
17| 000150 fmadd FC01013A 1 FMA fp0=fp0,fp1,fp4,fcr
21| 000154 lfdu CC990008 1 LFDU fp4,gr25=c(gr25,8)
23| 000158 lfdu CD5B0008 1 LFDU fp10,gr27=c(gr27,8)
22| 00015C lfdu CCFA0008 1 LFDU fp7,gr26=c(gr26,8)
Fortran Tuning Guide for Maximum Megaflops 141

20| 000160 fmadd FD01427A 1 FMA fp8=fp8,fp1,fp9,fcr
23| 000164 lfd C9230028 1 LFL fp9=a(gr3,40)
19| 000168 fmadd FCA129BA 1 FMA fp5=fp5,fp1,fp6,fcr
22| 00016C lfd C8C30020 1 LFL fp6=a(gr3,32)
21| 000170 fmadd FC61193A 1 FMA fp3=fp3,fp1,fp4,fcr
18| 000174 stfd D8430000 1 STFL a(gr3,0)=fp2
17| 000178 stfd D803FFF8 1 STFL a(gr3,-8)=fp0
24| 00017C lfdu CC9C0008 1 LFDU fp4,gr28=c(gr28,8)
22| 000180 fmadd FC4131FA 1 FMA fp2=fp6,fp1,fp7,fcr
19| 000184 stfd D8A30008 1 STFL a(gr3,8)=fp5
23| 000188 fmadd FCC14ABA 1 FMA fp6=fp9,fp1,fp10,fcr
24| 00018C lfd C8A30030 1 LFL fp5=a(gr3,48)
20| 000190 stfd D9030010 1 STFL a(gr3,16)=fp8
21| 000194 stfd D8630018 1 STFL a(gr3,24)=fp3
24| 000198 fmadd FC21293A 1 FMA fp1=fp5,fp1,fp4,fcr
23| 00019C stfd D8C30028 1 STFL a(gr3,40)=fp6
22| 0001A0 stfd D8430020 1 STFL a(gr3,32)=fp2
24| 0001A4 stfd D8230030 1 STFL a(gr3,48)=fp1
25| 0001A8 bc 4200FF80 0 BCT ctr=CL.6,

The loop contains eight FMAs as expected. However, instead of nine loads
and zero stores, there are 16 loads and eight stores. Closer inspection
reveals that the eight elements of the array Y are all being stored
unnecessarily - and then seven of them are being reloaded unnecessarily.
When there was only one statement involving the scalar Y(I), the compiler
recognized it as a scalar. Now, however, at -O2, the compiler is assuming that
the Y values used by the statements may depend on the values calculated in
other statements. At -O4, compiler logic is invoked that works out that this is
not so. Inspection of the assembler code for -O4 reveals that the unnecessary
stores have been eliminated.

To produce hand-tuned code that will perform well at -O2 requires the
introduction of explicit temporary scalars:

T4B

DO I = 1, N, 8
S0 = Y(I)
S1 = Y(I+1)
S2 = Y(I+2)
S3 = Y(I+3)
S4 = Y(I+4)
S5 = Y(I+5)
S6 = Y(I+6)
S7 = Y(I+7)
DO J = 1, N
142 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

S0 = S0 + X(J)*A(J,I)
S1 = S1 + X(J)*A(J,I+1)
S2 = S2 + X(J)*A(J,I+2)
S3 = S3 + X(J)*A(J,I+3)
S4 = S4 + X(J)*A(J,I+4)
S5 = S5 + X(J)*A(J,I+5)
S6 = S6 + X(J)*A(J,I+6)
S7 = S7 + X(J)*A(J,I+7)

ENDDO
A(I) = S0
A(I+1) = S1
A(I+2) = S2
A(I+3) = S3
A(I+4) = S4
A(I+5) = S5
A(I+6) = S6
A(I+7) = S7

ENDDO

Measured MFLOPS on 200 MHz at -O2 -O3 -O4
645 606 588

This example illustrates a good general rule:

 • To help the compiler, it is a good idea to replace scalar array elements or
expressions with explicitly coded scalars. Note, however, that there must
not be too many of them. The compiler will try to allocate a hardware
register to each scalar in a loop. There are 32 architected registers and, if
the compiler runs out, it will spill the registers to memory with a serious
performance impact. The general advice to keep loops small and simple
applies here.

Now -O2 is going at 645 MFLOPS - as close as we are likely to get to the
theoretical limit of 711 MFLOPS. Note again that, with this hand-tuned loop,
-O4 slows it down.

MxN Unrolling - Matrix Multiply
DO I=1,N
DO J=1,N
DO K=1,N
S = S + A(J,K)*B(K,I)

ENDDO
ENDDO

ENDDO
Fortran Tuning Guide for Maximum Megaflops 143

The example coding shows the heart of matrix multiply coding where the
scalar result element, C(I,J) has already been replaced with a temporary
scalar. Code setting C(I,J) to S and back again has been omitted for clarity.

The problem with this is that the inner loop is load/store bound. There are two
loads and only one FMA.

A key technique to making the loop FMA-bound instead of load/store-bound
is to unroll both of the outer loops to relatively small depths. The following
code, for the sake of illustration, shows 3x2 unrolling:

DO I=1,N,3
DO J=1,N,2
DO K=1,N
S00 = S00 + A(J ,K)*B(K,I)
S01 = S01 + A(J ,K)*B(K,I+1)
S02 = S02 + A(J ,K)*B(K,I+2)
S10 = S10 + A(J+1,K)*B(K,I)
S11 = S11 + A(J+1,K)*B(K,I+1)
S12 = S12 + A(J+1,K)*B(K,I+2)

ENDDO
ENDDO

ENDDO

Note the re-use of elements of A and B. There are now five loads in the loop
and six FMAs - it has become FMA-bound.

Generally, for MxN unrolling, there are (M+N) loads and (M*N) FMAs. So 2x2
unrolling is balanced and anything more is FMA-bound. To drive both of the
FPU pipelines, needs 8 FMAs in the loop, so 2x4 or 3x3 would be needed. In
practice, make it as high as possible (the more FMA-bound the better)
consistent with not causing register spill. For this loop, 4x4 is the usual limit.
See 9.3, “Case Study: Matrix Multiplication” on page 151, for more details on
matrix multiply.

8.6 Some Comments on Parallel Coding for Model 260

The Model 260 is available as a 2-way SMP. Much of the discussion in this
section, however, is equally applicable to SMPs other than Model 260, such
as the previous PowerPC SMP models based on the 604e chip, and to
possible follow-on POWER3 products with more than two processors.

To date, almost all RS/6000 parallelization work in the scientific and technical
computing area has been done for the SP, because the best performance for
such applications has been obtainable from POWER2 processors, and these
144 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

have not been available as SMPs. Model 260 is the first SMP processor with
leading edge floating point performance, and this considerably widens the
options available for parallelization.

In particular, the XL Fortran Version 5 compiler allows automatic and
semi-automatic parallelization at the loop level.This is described in detail in
Chapter 4, “Using the SMP Feature of XL Fortran” on page 29. With some
programs, good speedups close to 2 can be obtained. However, for many, the
percentage of CPU time spent in parallelizable loops is considerably less
than 100 percent and speedups are disappointing.

With the distributed memory SP, parallelization at the loop level is not usually
practicable because of the message passing overhead across the SP switch.
To perform successfully across distributed memory nodes requires
parallelization at a high level, using either explicitly coded message passing
or the IBM XL Fortran HPF Compiler.

Usually, this high-level parallelization is far more thorough-going and effective
than any loop-level parallelization can be. Therefore, if the work has already
been done to create an SP version, it probably makes sense to run this on the
2-way Model 260 rather than use the compiler to generate loop-level SMP
parallel code. There are two options to consider:

1. If coded using MPI, run it unchanged in one of the ways discussed in
Chapter 6, “Message Passing Interface” on page 81.

2. Keep the same structure as in the MPI code, but, instead of running two
separate processes under the control of PE, run two pthreads. This would
require some recoding, but, since the parallel logic would remain the
same, it may well be straightforward.

MPI calls would be replaced with explicitly coded memory to memory
copies plus thread-to-thread synchronization. It may also be possible to
avoid the overhead of memory to memory copy if the logic is such that,
with the addition of synchronization coding only, the threads can work with
the same data areas.

The question of running an existing MPI program across multiple SMP nodes
in an SP is discussed in Chapter 6, “Message Passing Interface” on page 81.
Fortran Tuning Guide for Maximum Megaflops 145

146 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

Chapter 9. Throughput Measurements

This section takes a look at the throughput obtained by running two copies of
a program simultaneously, compared to a single copy of the program by itself.
No parallel programming is involved.

First, a copy program, which access storage very heavily, is examined and
then some more realistic user programs.

9.1 Copy Program

Figure 24 on page 148 and Figure 25 on page 148 show the aggregate rates
for untuned and tuned copy program respectively, running a single copy, and
then two copies simultaneously.

For lengths of less than 32 KB, where the data is in the L1 cache, the
aggregate rate for two copies is almost exactly twice that for one copy.

For lengths of less than 2 MB, where the data is in the L2 cache, the
aggregate rate for two copies is close to twice that for one copy.

For very long lengths, the aggregate rate for two tuned copies is only
marginally improved over that for one tuned copy. This is because a single
tuned copy by itself uses almost all of the memory bandwidth.
© Copyright IBM Corp. 1998 147

Figure 24. Aggregate Rates for Untuned Copy

Figure 25. Aggregate Rates for Tuned Copy
148 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

The ratios of copy rates for one and two processors are shown in Table 21.

Table 21. Summary of Copy Rates

The low copy rate for 8 MB represents an extreme situation which will rarely
occur in practice. The throughput ratios for real programs are much better
than this, and are described in the next section.

9.2 User Programs

Table 22 lists the throughput ratios for a number of real user programs.

Table 22. Real User Programs

Program Notes:

1. Seismic Omega-X: Uses tridiagonal complex arithmetic solver, with about
30 MB of data.

Program Rate (MB/s) Throughput
Ratio

Single Program Two Programs

16 KB Copy 1464 2936 2.00

16 KB Tuned Copy 786 1569 2.00

1 MB Copy 510 945 1.85

1 MB Tuned Copy 704 1270 1.80

8 MB Copy 291 460 1.58

8 MB Tuned Copy 497 s 587 s 1.18

Program Elapsed Time (sec) Throughput
Ratio

Single Program Two Programs

1. Omega-X 298 307 1.94

2. Pre-Stack Migration 184 184 2.00

3. Weather Forecast 1248 647 1.93

4. Oil Reservoir Simulator 471 480 1.96

5. RADIOSS 3476 3520 1.97

6. sPPM 99.2 101.8 1.95
Throughput Measurements 149

2. Pre-Stack Migration: Seismic industry program. It uses floating point to
integer conversion to index into arrays. The data in this example occupied
less 1 MB.

3. Weather Forecast: Details of this program are given in 10.3, “Weather
Forecast Code” on page 159. The working set size was about 120 MB.

4. Oil Reservoir Simulator: Details of this program are given in 10.2, “Oil
Reservoir Simulator” on page 159. The working set size was about 150
MB.

5. RADIOSS: This is a crash analysis code, with more details in 10.5, “Crash
Worthiness Analysis: RADIOSS” on page 163. The problem had over
60,000 elements.

6. sPPM: ASCI benchmark program. Solves a 3D gas dynamics problem
using a simplified version of PPM (Piecewise Parabolic Method). The
working set size was 236 MB. For more details of the application, see:

www.llnl.gov/asci_benchmarks/asci/limited/ppm/sppm_readme.html

The fact that the throughput ratio for two processors is so close to 2 for all of
the above programs, even those with large working sets, is a tribute to the
cache design and memory access techniques implemented in the Model 260.

9.3 Case Study: Matrix Multiplication

This section analyzes various implementations of a fundamental
building-block used in dense linear algebra and elsewhere, the Level 3 BLAS
routine DGEMM. DGEMM implements the following matrix
multiply-and-update operation:

C = alpha*op(A)*op(B) + beta*C

where op(A) can be either A or AT, the transpose of A. The full calling
sequence for DGEMM is as follows:

DGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)

where:

TRANSA,TRANSB CHARACTER variables with values ’No Transpose’ or ’Transpose’
(only the first character is significant and need be supplied).

M,N,K The dimensions of the matrices. If TRANSA,TRANSB = ’N’, then
the matrices are of dimensions A(M,K), B(K,N), and C(M,N).

ALPHA,BETA The scalar constants.

A,B,C The arrays to be multiplied.
150 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

LDA,LDB,LDC The leading dimensions of the matrices as they are
declared in the calling (sub)-program.

While few real applications are as simple as DGEMM, with such easily
understood data access patterns, an understanding of how to achieve good
performance with DGEMM can be very useful when going on to tune more
realistic applications. Moreover, DGEMM operations are widespread
throughout dense linear algebra, such as matrix factorizations and
eigenvalue problems. For example, the public-domain LAPACK library
contains a wide range of routines that have been restructured where possible
as blocked algorithms, so that tuned Level 3 BLAS routines, such as
DGEMM, can be used to achieve good performance on a range of different
architectures.

9.3.1 The Computational Kernel
To illustrate the coding required to achieve close to optimal performance on
POWER3, consider the simple multiply-and-update operation:

C = C + AT*B

(AT is used so that operations at the inner-most level are all stride one.)

This can be implemented by the following code fragment:

DO I = 1, M
DO J = 1, N

DO L = 1, K
C(I,J) = C(I,J) + A(L,I)*B(L,J)

END DO
END DO

END DO

Although the nesting order of the loops can be changed, the so-called DOT
formulation (where the innermost loop is a dot-product) was used since this
maps best to the POWER architecture’s FMA instructions.

The speed of the innermost loop is limited by the requirement to load both
A(L,I) and B(L,J) in order to perform the single FMA operation. On POWER1,
with a single floating-point unit, near optimal performance could be achieved
by unrolling the two outermost loops to depth two, as implemented in the
following fragment (where all tidy-up code has been omitted for simplicity):

DO I = 1, M, 2
DO J = 1, N, 2

T11 = ZERO
T21 = ZERO
Throughput Measurements 151

T12 = ZERO
T22 = ZERO
DO L = 1, K

T11 = T11 + A(L,I)*B(L,J)
T21 = T21 + A(L,I+1)*B(L,J)
T12 = T12 + A(L,I)*B(L,J+1)
T22 = T22 + A(L,I+1)*B(L,J+1)

END DO
C(I ,J) = C(I ,J) + T11
C(I+1,J) = C(I+1,J) + T21
C(I ,J+1) = C(I ,J+1) + T12
C(I+1,J+1) = C(I+1,J+1) + T22

END DO
END DO

With this code, each loaded element of A and B has been used twice, so that
each FMA operation only requires a single load, which can be overlapped
with the FMA. This code is optimal for POWER1, in the sense that the ratio of
loads to FMA operations is precisely what the hardware supports.

For POWER2 and POWER3, with dual floating-point units, the same
theoretical 1:1 ratio of loads to FMA instructions is still supported by the
hardware. In practice, however, it is necessary to unroll further to facilitate the
overlap of FMA operations and loads. The following code fragment allows the
floating-point units to operate at peak performance for these architectures,
while overlapping the loads:

DO I = 1, M, 4
DO J = 1, N, 4

T11 = ZERO
T21 = ZERO
...
...
T34 = ZERO
T44 = ZERO
DO L = 1, K

T11 = T11 + A(L,I)*B(L,J)
T21 = T21 + A(L,I+1)*B(L,J)
...
...
T34 = T34 + A(L,I+2)*B(L,J+3)
T44 = T44 + A(L,I+3)*B(L,J+3)

END DO
C(I ,J) = C(I ,J) + T11
C(I+1,J) = C(I+1,J) + T21
...
...
152 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

C(I+2,J+3) = C(I+2,J+3) + T34
C(I+3,J+3) = C(I+3,J+3) + T44

END DO
END DO

On a single 200 MHz POWER3 processor, in the case where all the matrices
fit into cache, this code performs at close to 750 MFLOPS, out of a peak of
800 MFLOPS.

Note that the XL Fortran compiler is capable of performing many loop
transformations, such as loop unrolling, in order to improve performance. If
the above code is compiled with -O3 -qarch=pwr3, the compiler further unrolls
the innermost loop to a depth of two. This actually reduces performance, as
the code runs out of floating-point registers and needs temporary storage for
register contents. On the other hand, if the code is compiled with -O2
-qarch=pwr3, it appears that, although the optimal numbers of FMA and
LOAD instructions are generated for the innermost loop, the order of the
instructions produced makes it more difficult for the processor to overlap the
loads with the FMA instructions.

9.3.2 Single Processor Implementation of DGEMM
This section shows how the code fragment above may be extended to be a
full implementation of DGEMM. In the discussion above, it is assumed that all
the data fits into the Level 1 cache. In practice, for large matrices, this won’t
be the case, and it is necessary to divide the matrices into blocks, as shown
in Figure 26 on page 154, and then to arrange to perform as many operations
as possible on the blocks currently residing in cache, before they are flushed
from cache as newer blocks are loaded.
Throughput Measurements 153

In Figure 26, the block of C is updated with the multiplication of the blocks of
A and B. There are many such updates involved in completing the matrix
multiplication, and there is some choice in the order in which the updates are
carried out. In the implementation described here, if the matrix were to be
partitioned into 2-by-2 blocks, the block multiplication

C11|C12 C11|C12 A11|A12 B11|B12
--- --- = --- --- + --- --- * --- ---
C21|C22 C21|C22 A21|A22 B21|B22

would be carried out in the following order:

C11 = C11 + A11 * B11
C21 = C21 + A21 * B11
C11 = C11 + A12 * B21
C21 = C21 + A22 * B21
C12 = C12 + A11 * B12
C22 = C22 + A21 * B12
C12 = C12 + A12 * B22
C22 = C22 + A22 * B22

Figure 26. Block Matrix Multiplication

In order to implement the full DGEMM specification, arrange for the
multiplication by the constants ALPHA and BETA. The algorithm uses the
following block structure when TRANSB=’No Transpose’:

AACC

BB

AC

B

+
*

M

N NK

K

MMB MB

KB

KB

NB
NB
154 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

DO J = 1, N, NB
DO L = 1, K, KB

DO I = 1, M, MB
TEMP1 = ALPHA*AA or ALPHA*AAT

CC = BETA*CC + TEMP1T*BB
END DO

END DO
END DO

and the following when TRANSB=’Transpose’ where the DDOT kernel would
access B along its rows with non-unit stride:

DO J = 1, N, NB
DO L = 1, K, KB

TEMP2 = ALPHA*BBT

DO I = 1, M, MB
TEMP1 = AA or AAT

CC = TEMP1T*TEMP2 + BETA*CC
END DO

END DO
END DO

In fact, the implementation of DGEMM described above is available in the
public-domain. It is the work of Kagstrom and Ling from Umea University,
Sweden, and is currently available from Netlib at the following URL:

http://www.netlib.org/blas/gemm_based/ssgemmbased.tgz

The performance of any blocked algorithm will clearly vary according to the
choice of the size of the blocks. The best choice of blocksize will also depend
upon the size of the problem and, to some extent, on the shape of the
matrices. The only change made to public-domain code was to change the
blocksize to have MB=32 and KB=NB=100. This is certainly not optimal, but
gave good performance for a wide range of matrix dimensions.

In Figure 27 on page 157, the performance of this code when multiplying
square matrices of increasing size, so that M = N = K is shown. The
performance of the code described above (labelled Fortran) is compared
against the implementation of DGEMM in the ESSL POWER3-enhanced
library, and performs nearly as well for square matrices. It should be noted,
however, that ESSL is likely to perform better across a wider range of matrix
dimensions than the Fortran version described here, for example, on
rectangular matrices where one dimension is relatively small.
Throughput Measurements 155

9.3.3 Automatically Parallelized DGEMM
Compiling the Fortran version described above with the flag -qsmp doesn’t
yield any benefit, since the compiler is only able to parallelize the main nest of
loops on the innermost DO-loop, which removes all the benefits of the
four-by-four unrolling technique, and significantly reduces performance.
However, in the block structure described above, it is easy to see that
independent blocks of the matrix C are being updated in the DO I = 1, M, MB
loop, and these may be performed in parallel. The code has been modified to
use the INDEPENDENT compiler directive as follows:

DO J = 1, N, NB
DO L = 1, K, KB

*SMP$ INDEPENDENT
DO I = 1, M, MB

...
(multiply the blocks)
...

END DO
END DO

END DO

The performance of this code on a machine with two 200 MHz processors
(labelled "Fortran -qsmp") is compared against the single processor
performance, and also against the ESSL SMP library. As may be seen from
Figure 27, this code performs at very close to twice the speed of the single
processor version.

The ESSL used in this publication is an early beta of a POWER3-enhanced
library, please refer to Appendix D, “Special Notices” on page 199
regarding the performance numbers.

Notice
156 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

Figure 27. Performance of DGEMM

9.3.4 MPI Implementations
The performance of a distributed memory version of matrix-multiply running
on the two-processor SMP machine was also examined. The routine
PDGEMM from the PBLAS (Parallel BLAS) library distributed with the
SCALAPACK (Scalable LAPACK) library was used. This routine uses a
block-cyclic distribution of the matrices, with communications performed by
the BLACS (Basic Linear Algebra Communications Subprograms), which are
in turn implemented in terms of MPI calls. Within processes, blocks are
multiplied using the usual DGEMM routine, and here the beta ESSL
POWER3 enhanced library is used. There are a number of ways in which the
matrices can be blocked. Simply use 64-by-64 blocks, since at this matrix
size the performance of the ESSL routine DGEMM is already close to its
peak.

The two implementations of MPI, described in Chapter 6, “Message Passing
Interface” on page 81, are used. The version in POE, which currently needs
to use the IP loopback interface, and the public domain version MPICH, built
to use shared memory.
Throughput Measurements 157

Figure 27 on page 157 includes timings for the PBLAS routine using MPICH
(shown as PBLAS/MPICH+shmem), and the same routine using POE with IP
(shown as PBLAS/POE+IP). As may be expected, the overhead of
communicating matrix blocks, even on the same SMP machine, means that
the MPI code is slower than the true SMP versions. But it is interesting to note
that the version using IP is only slightly slower than the shared-memory
version, showing that the ratio of computation to communication is relatively
high in PDGEMM.
158 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

Chapter 10. Kernels, Codes, and Benchmarks

In this chapter, a discussion of common kernels, codes, and benchmarks, and
how they relate to POWER3, is given.

10.1 GAMESS

The General Atomic and Molecular Electronic Structure System (GAMESS) is
a general ab initio quantum chemistry package. This program is maintained
by the members of the Gordon research group at Iowa State University.

Briefly, GAMESS can compute wavefunctions ranging from RHF, ROHF, UHF,
GVB, and MCSCF, with CI and MP2 energy corrections available for some of
these. Analytic gradients are available for these SCF functions, for automatic
geometry optimization, transition state searches, or reaction path following.
Computation of the energy Hessian permits prediction of vibrational
frequencies. A variety of molecular properties, ranging from simple dipole
moments to frequency dependent hyperpolarizabilities may be computed.
Many basis sets are stored internally, and together with effective core
potentials, all elements up to Radon may be included in molecules. Several
graphics programs are available for viewing the final results. Many of the
computational functions can be performed using direct techniques or in
parallel on appropriate hardware.

Because GAMESS is distributed freely, the development of the code benefits
from contributions from many collaborators located around the world, in
academia, government laboratories, and industry. Among the many features
of GAMESS, the most exciting are its enhanced performance due to a fully
parallel implementation and the advantage it takes of modern graphics
methods. As the POWER3 nodes for the IBM RS/6000 SP were not available
at the time of this publication, this parallel feature was not tested.

A detailed description of the program is available in the following journal
article:

General Atomic and Molecular Electronic Structure System, M.W.Schmidt,
K.K.Baldridge, J.A.Boatz, S.T.Elbert, M.S.Gordon, J.H.Jensen, S.Koseki,
N.Matsunaga, K.A.Nguyen, S.Su, T.L.Windus, M.Dupuis, J.A.Montgomery J.
Comput. Chem., 14, 1347-63(1993).

The homepage of GAMESS is located at:

http://www.msg.ameslab.gov/GAMESS/GAMESS.html
© Copyright IBM Corp. 1998 159

The compiler options for the runs were:

xlf_r -qarch=x -O3 -qalias=noaryovrlp:nointptr:std

where x is either pwr3 or pwr2 depending on the platform.

The timing results are seen in the Table 23. Only the CPU time (user time is
reported. The wall clock time is much higher because of I/O. The speedup
being greater then megahertz scaleup is attributed to the extra load/store unit
in the POWER3 processor.

Table 23. GAMESS Runs in Seconds

10.2 Oil Reservoir Simulator

A number of measurements were made with an Oil Reservoir simulator, which
demonstrated the performance of the Model 260 relative to the Model 590,
the effect of Fortran V5 compared to V4, and the throughput capability when
using two processors on the 260.

The program was compiled with -O2, and without either -qarch=pwr2 or
-qarch=pwr3 so that the same executable could run on both the Model 590
and the Model 260.

Measurements were made for 20 time steps for a two-phase problem with 64
KB grid blocks. The working set size was 150 MB.

Table 24. Times for Oil Reservoir Simulator Code

Dataset P2SC-160 Model 260 Speedup

C4H4 FULLNR MCSCF 75.74 60.47 1.25

C4H6 GVB hessian 215.32 201.81 1.07

Thymine RHF gradient 336.74 270.28 1.25

Ti2H8 MP2 energy 322.58 240.92 1.39

System Compiler Level Time (secs) Ratios

590 V4.1.0 1310

260 (1 prog) V4.1.0 471 260/590 = 2.78

260 (1 prog) V5.1.1 471 V5/V4 = 1.00

260 (2 progs) V5.1.1 480 Throughput = 1.96
160 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

The performance of the Model 260 compared to the Model 590 is not quite in
the ratio of the cycle times (5 nanoseconds compared to 15 nanoseconds),
but is very much in line with expectations considering the similarity of memory
access times.

Fortran V5 and V4 give the same results. This is probably because this code
has been highly tuned in the past, and not so much was left for the compiler
to tune.

The throughput ratio indicates that there is very little memory interference
between the two programs. Apparently, a lot of the data references are to the
L1 and L2 caches.

10.3 Weather Forecast Code

A finite different weather forecast program was run on the Model 260 to
produce a six hour forecast. The forecast included six hours of data
assimilation prior to the starting the forecast. The forecast was for a local
area. The the horizontal grid size was 128 by 128, and there were 19 vertical
levels.

The model was set up to run with four processes using MPI. It was run with
MPI in IP mode using loopback, and so automatically used both processors of
the Model 260. To get a throughput comparison of one processor compared
to two, the program was bound to one processor using the bindprocessor
command immediately after the program started.

For comparison purposes, the model was also run on a 120 MHz POWER2
four node SP, a 160 MHz POWER2 single node, and with both Fortran V4 and
Fortran V5. Results are shown in Table 25. The code was compiled with -O3,
and -qarch as specified in the Table.

The total working set size of all 4 processes was about 120 MB.

Table 25. Times for Weather Forecast Code

System Procs Fortran
Level

Fortran
Opt

Time
(secs)

Ratios

260 pwr3 1 V5.1.1 pwr3 968

260 pwr3 2 V5.1.1 pwr3 506 Throughput = 1.91
pwr3/nopwr = 1.20

160 MHz pwr2 1 V4.1.0 nopwr 1510

260 pwr3 1 V4.1.0 noprw 1268 260/160MHz = 1.19
Kernels, Codes, and Benchmarks 161

The following conclusions can be drawn:

 • As with the oil reservoir simulator, the throughput of two processors
compared to one is greater than 1.9.

 • The Model 260 is 19 percent faster on this code than the 160 MHz
POWER2. This is a little less than the increase in MHz (160 to 200).

 • One Model 260 (with two processors) is almost equivalent to a four node
120 MHz POWER2 SP.

 • Fortran V5 gives a 10 percent speedup over Fortran V4. Since this code
has not been hand tuned, the compiler has a lot of opportunity to improve
the performance.

 • The -qarch=pwr3 option gives a 20 percent speedup. Since the code is
mostly single precision, the new single precision floating point operations
are extremely useful.

10.4 Computational Fluid Dynamics: FIRE

FIRE is a comprehensive computational fluid dynamics (CFD) analysis
product developed by AVL List GmbH, Austria. It provides solutions to a wide
variety of fluid flow and combustion applications, for example in the
automotive, biomedical, aerospace, electronics, and chemical industries.
FIRE applies to internal and external flow, gases, or liquids, steady state or
transient. The code is able to handle time-dependent boundary conditions
and moving geometries. Pre- and post-processors and solution modules are
tightly integrated. The flow solver is based on a finite volume differential
scheme using a modified variant of the SIMPLE algorithm. For further details,
refer to the AVL’s Web page:

http://firewww.avl.co.at

FIRE represents a class of CFD codes which are also well tuned for vector
computers. The performance of such CFD codes depends strongly on
memory bandwidth. The FIRE Kernel Benchmarks (Serial Linear Equation
Solver Benchmarks) are designed by AVL for performance comparison of

260 pwr3 2 V4.1.0 nopwr 667

260 pwr3 2 V5.1.1 noprw 606 V5/V4 = 1.10

120 MHz pwr2 4 V4.1.0 pwr2 480

System Procs Fortran
Level

Fortran
Opt

Time
(secs)

Ratios
162 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

different hardware platforms. Benchmark results for a lot of platforms are
available through URL http://firewww.avl.co.at/html/346.htm. Because
POWER2 machines offer high memory bandwidth, POWER2 and succeeding
P2SC machines have turned out to be excellent RISC platforms for this code.
The POWER3 workstation Model 260 is expected to deliver a similar
performance with respect to FIRE as the fastest P2SC model, since the
memory subsystem sustains a similar performance level. As pointed out in
Chapter 7, “Performance and Tuning Analysis” on page 87, the L1 cache
bandwidth is smaller compared to P2SC, whereas the prefetching mechanism
provides a higher memory bandwidth when working out-of-cache.

In the following, results for the FIRE kernel benchmarks and a complete FIRE
benchmark based on an industrial relevant input deck are presented. For this
purpose, the kernel benchmark code and FIRE version 70b (patchlevel 2) has
been compiled using XLF 5.1.1.0. The results for P2SC were obtained on AIX
4.2.1 using XLF 5.1.0.2.

The kernel benchmark test cases are outlined in Table 26 on page 163. In
order to reach the expected performance level, the XLF flags, -qarch=pwr3
-qtune=pwr3 -O3 -qhot, are required. As verified for a single case, the -qhot
flag speeds up the computation by about 15 percent. Additional flags, such as
-qalias=noaryovrlp:nointptr:std -qfloat=hsflt:fold, improve the performance in
this case just by less than 2 percent. For comparison, P2SC results are given
in Table 27.

Table 26. FIRE Kernel Benchmark Cases

Table 27. FIRE Kernel Benchmark Results

Test Case Number of Cells

TJUNC (t-junction) 13,845

SWIRL (helical intake port) 47,312

PENT (square duct) 108,000

COJACK (water cooling jacket) 318,044

WING (airfoil) 864,000

Execution
Times [sec]

P2SC 160 MHz
sequential

P2SC 160 MHz
MPI: 1-way

POWER3
sequential

POWER3
SMP: 2-way

TJUNC 1.4 0.97 0.65

SWIRL 4.6 4.9 4.7 2.3

PENT 16.9 18.2 18.7 10.6
Kernels, Codes, and Benchmarks 163

The following code section shows a loop which consumes a major part of the
CPU time of the kernel benchmark. The loop counter ranges from one to the
number of grid cells.

DO 4 NC=NINTCI,NINTCF
 DIREC2(NC)=BP(NC)*DIREC1(NC)
 X -BS(NC)*DIREC1(LCC(1,NC))
 X -BW(NC)*DIREC1(LCC(4,NC))
 X -BL(NC)*DIREC1(LCC(5,NC))
 X -BN(NC)*DIREC1(LCC(3,NC))
 X -BE(NC)*DIREC1(LCC(2,NC))
 X -BH(NC)*DIREC1(LCC(6,NC))
 4 CONTINUE

The performance is determined by about three loads and one indirect
addressing per multiply-subtract operation. The compiler performs a level two
unrolling, limited by the number of available registers. No obvious
possibilities of Fortran tuning have been found. Increasing the formal array
dimensions, by a small offset, such as seven, does increase the overall
performance of the kernel benchmark by few percent (not reported in Table
27). The SMP performance is clearly limited by the bandwidth of the shared
memory bus. For this application, a distributed memory approach using
independent processors delivers a better (almost linear) speedup, as proven
for P2SC.

Next, an industrial application of 3D incompressible flow simulation with
about 540000 grid cells was examined for 150 time steps. The corresponding
benchmark results are shown in Table 28. Due to numerical round off errors,
the accumulated sum of iterations is1566 for P2SC and 1570 for POWER3.
The benchmark results support the expectation that FIRE will show a similar
performance on a 200 MHz POWER3 system (1 CPU) as on P2SC.

Table 28. FIRE Benchmark Results

COJACK 61.0 64.0 67.3 45.7

WING 125.6 136.9 102.3

P2SC Model 397 (160 MHz) POWER3 Model 260 (200 MHz)

real 23988
user 23295
system 19

real 23907
user 23879
system 9

Execution
Times [sec]

P2SC 160 MHz
sequential

P2SC 160 MHz
MPI: 1-way

POWER3
sequential

POWER3
SMP: 2-way
164 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

10.5 Crash Worthiness Analysis: RADIOSS

Crashworthiness analysis and sheet metal forming codes represent a class of
finite element codes based on explicit time step integration schemes.
Compared to implicit codes they require significantly less memory. In general,
crash applications are not I/O bound, as large implicit applications often are.
Especially running in parallel, a significant part of the working set of a
processor might fit into a large second level cache. In case of single precision
analysis, the PowerPC 604e based RS/6000 Model F50 (332 MHz) has
shown for several benchmark cases a similar performance level per CPU as
P2SC based machines, which are usually much stronger in numerical
intensive computing. Thus, POWER3 is expected to improve crash analysis
performance compared to P2SC.

RADIOSS CRASH is a crashworthiness analysis code developed by
Mecalog, France. RADIOSS has been widely validated and is used worldwide
by automotive companies and their suppliers to study the crashworthiness
behavior of their new products. For further details, refer to the RADIOSS web
page http://www.radioss.com.

In order to get an early performance comparison between P2SC and
POWER3, two industrial test cases, as described in Table 29, have been
studied for 5000 cycles (timesteps). For a complete simulation, typically more
than 100,000 cycles are necessary. Large input decks exceed 150000
elements. RADIOSS version 3.1n was compiled using XLF 3.2.5 for P2SC

This benchmark was performed with a pre-GA POWER3 version of FIRE
on pre-GA hardware for the purpose of an early performance evaluation.
This does not imply availability of this product nor support by AVL. The
performance may change as the application software and the compiler
develop. For the latest Kernel Benchmark results, see the URL mentioned
in this section.

Take Note
Kernels, Codes, and Benchmarks 165

and XLF 5.1.0.0 for POWER3 and PowerPC 604e, respectively. For
POWER3 and PowerPC 604e, the flag -qstrict was applied.

Table 29. RADIOSS Benchmark Test Cases

The benchmark results are shown in Table 30. As RADIOSS is using 64 bit
floating-point arithmetic, the 32 bit PowerPC 604e platform is outperformed
by P2SC. Probably due the introduction of a 4 MB L2 cache and due to the
advanced chip logic, such as branch prediction and out-of-order execution,
the POWER3 platform offers a solid speedup of more than 30 percent
compared to P2SC. The throughput of a two processor system Model 260 is
almost perfect for this benchmark, taking into account that the I/O was
performed sequentially. With help of a second disk, the I/O performance could
be improved, too.

Table 30. RADIOSS Benchmark Results

case 1 Front impact of a car on a rigid wall:
66,288 3D 4-node elements

case 2 Side impact of a car with a solid barrier:
2 dummies included
47,928 3D 4-node shell elements
6,325 8-node brick solid elements

case time
[sec]

PowerPC 604e
Model F50
(332 MHz)

P2SC
Model 397
(160 MHz)

POWER3
Model 260 (200 MHz)

1 job throughput
(2 jobs, 1 disk only)

1 real
user
system

5089
5071

1

3476
3475

1

3499 / 3540
3484 / 3523

1 / 1

2 real
user
system

6678
6622

5410
5391

1

3561
3560

1

These benchmarks were performed with a pre-GA POWER3 version of
RADIOSS on pre-GA hardware for the purpose of an early performance
evaluation. This does not imply availability of this product nor support by
Mecalog. The performance may change as the application software and
the compiler develop.

Take Note
166 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

10.6 Finite Difference Kernel

In the finite difference numerical methods, frequently it requires to compute
the partial derivatives and the grid-point average of the field variable. The
example shown below illustrates the tuning method when using this type of
computational kernel. The example is the SUBROUTINE RESID of the mg
(multigrid) program from NAS Parallel Benchmarks (NPB).

The sample code distributed in NAS NPB 1.0 requires 18 floating adds and 3
floating-point multiply-add instructions.

do 600 k =2,n-1
do 600 j =2,n-1
do 600 i =2,n-1

 r(i,j,k)=v(i,j,k)
> -a0*(u(i, j, k))

 > -a2*(u(i-1,j-1,k) + u(i, j-1,k)
 > + u(i-1,j, k) + u(i, j, k)
 > + u(i, j-1,k-1) + u(i, j, k-1)
 > + u(i, j-1,k) + u(i, j, k)
 > + u(i-1,j, k-1) + u(i-1,j, k)
 > + u(i, j, k-1) + u(i, j, k))
 > -a3*(u(i-1,j-1,k-1) + u(i, j-1,k-1)
 > + u(i-1,j, k-1) + u(i, j, k-1)
 > + u(i-1,j-1,k) + u(i, j-1,k)
 > + u(i-1,j, k) + u(i, j, k))
 600 continue

The total number of arithmetical operations can be reduced by pre-computing
two grid point averages of u field and storing them in two scratch vectors,
namely u1 and u2. The following code from NAS NPB 2.3 requires nine
floating point adds and three floating point multiply-add instructions.

do i3=2,n-1
do i2=2,n-1
do i1=1,n
u1(i1) = u(i1,i2-1,i3) + u(i1,i2+1,i3)

 > + u(i1,i2,i3-1) + u(i1,i2,i3+1)
u2(i1) = u(i1,i2-1,i3-1) + u(i1,i2+1,i3-1)

 > + u(i1,i2-1,i3+1) + u(i1,i2+1,i3+1)
enddo
do i1=2,n-1
r(i1,i2,i3) = v(i1,i2,i3)

 > - a0 * u(i1,i2,i3)
 > - a2 * (u2(i1) + u1(i1-1) + u1(i1+1))
 > - a3 * (u2(i1-1) + u2(i1+1))

enddo
Kernels, Codes, and Benchmarks 167

enddo
 enddo

The preceding code works well in a vector computer. However, due to the
presence of two additional temporary vectors, the performance gain of the
this code is not proportional to the reduction of the number of arithmetic
operations on a cache based superscalar computer. On the Model 260, the
speedup factor is about 1.13.

For Model 260, this computational kernel can be coded as follows. The two
scratch vectors are replaced by six scalar temporaries. u1m, u1i, and u1p
represent u1(i-1), u1(i), and u1(i+1) respectively, similarly for u2. In the loop
u1m and u1i are iteratively replaced, and u1p is recomputed. The compiler
will recognize that this is a predictive commoning construct. Thus, it
eliminates the need for load/store of vector temporaries as shown in the
previous example code.

do k=2,n-1
do j=2,n-1
u1m = u(1,j-1,k) + u(1,j+1,k)

> + u(1,j,k-1) + u(1,j,k+1)
u2m = u(1,j-1,k-1) + u(1,j+1,k-1)

> + u(1,j-1,k+1) + u(1,j+1,k+1)
u1i = u(2,j-1,k) + u(2,j+1,k)

> + u(2,j,k-1) + u(2,j,k+1)
u2i = u(2,j-1,k-1) + u(2,j+1,k-1)

> + u(2,j-1,k+1) + u(2,j+1,k+1)
do i=2,n-1
u1p = u(i+1,j-1,k) + u(i+1,j+1,k)

> + u(i+1,j,k-1) + u(i+1,j,k+1)
u2p = u(i+1,j-1,k-1) + u(i+1,j+1,k-1)

> + u(i+1,j-1,k+1) + u(i+1,j+1,k+1)
r(i,j,k) = v(i,j,k)

> - a0 * u(i,j,k)
> - a2 * (u2i + u1m + u1p)
> - a3 * (u2m + u2p)

u1m = u1i
u2m = u2i
u1i = u1p
u2i = u2p

enddo
enddo
enddo

The speedup factor of the above code over the original code (NPB 1.0) is
about 1.56.
168 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

10.7 Iterative Eigenvalues Solver

This customer benchmark program is an engineering analysis for ship
building applications. The Jacob iterative method of computing eigenvalues
for dense matrices dominate the CPU utilitization of this benchmark setup.
SUBROUTINE JACOBI consumes more than 99% CPU time. The following
code fragment shows the key part of this subroutine.

SUBROUTINE JACOBI(N, RTOL, NSMAX, IFPR, IOUT)
 IMPLICIT DOUBLE PRECISION (A-H,O-Z)
 PARAMETER(NNSVAB=840,NNELEM=144,MMDDOF=42)
 COMMON /P2/X(NNSVAB,NNSVAB),B(NNSVAB,NNSVAB)
 COMMON /P6/A(NNSVAB,NNSVAB)
 COMMON /P8/EIGV(NNSVAB)
C
 <set up>............
 DO 300 NSWEEP = 1, NSMAX
 EPS=(0.01**NSWEEP)**2
 DO 230 J = 1, NR

DO 210 K = J+1, N
 EPTOLA = (A(J,K)*A(J,K)) / (A(J,J)*A(K,K))
 EPTOLB = (B(J,K)*B(J,K)) / (B(J,J)*B(K,K))
 IF (EPTOLA.LT.EPS .AND. EPTOLB.LT.EPS) GO TO 210
 AKK = A(K,K)*B(J,K) - B(K,K)*A(J,K)
 AJJ = A(J,J)*B(J,K) - B(J,J)*A(J,K)
 AB = A(J,J)*B(K,K) - B(J,J)*A(K,K)
 CHECK = (AB*AB+4.*AKK*AJJ) / 4.

IF (CHECK .LT. 0.) STOP ’CHECK’
SQCH = SQRT(CHECK)

 D1 = 0.5*AB + SQCH
 D2 = 0.5*AB - SQCH
 DEN = D1
 IF (ABS(D2) .GT. ABS(D1)) DEN = D2
 IF (DEN .EQ. 0.) THEN
 CA = 0.D0
 CG = -A(J,K)/A(K,K)
 ELSE
 CA = AKK/DEN
 CG = -AJJ/DEN
 END IF
 IF (J.GT.2) THEN

IF (J-1 .GE. 0) THEN
 DO 120 I = 1, J-1
 AJ = A(I,J) BJ = B(I,J)
 AK = A(I,K)
 BK = B(I,K)
 A(I,J) = AJ + CG*AK
 B(I,J) = BJ + CG*BK
 A(I,K) = AK + CA*AJ
 B(I,K) = BK + CA*BJ
 120 CONTINUE
 END IF
 IF (K+1 .LE. N) THEN
 DO 150 I = K+1, N
 AJ = A(J,I)
 BJ = B(J,I)
 AK = A(K,I)
 BK = B(K,I)
 A(J,I) = AJ + CG*AK
 B(J,I) = BJ + CG*BK
Kernels, Codes, and Benchmarks 169

 A(K,I) = AK + CA*AJ
 B(K,I) = BK + CA*BJ
 150 CONTINUE
 END IF

IF (J+1 .LE. K-1) THEN
 DO 180 I = JP1, KM1
 AJ = A(J,I)
 BJ = B(J,I)
 AK = A(I,K)
 BK = B(I,K)
 A(J,I) = AJ + CG*AK
 B(J,I) = BJ + CG*BK
 A(I,K) = AK + CA*AJ
 B(I,K) = BK + CA*BJ
 180 CONTINUE
 END IF
 END IF
 AK = A(K,K)
 BK = B(K,K)
 A(K,K) = AK + 2.D0*CA*A(J,K) + CA*CA*A(J,J)
 B(K,K) = BK + 2.D0*CA*B(J,K) + CA*CA*B(J,J)
 A(J,J) = A(J,J) + 2.D0*CG*A(J,K) + CG*CG*AK
 B(J,J) = B(J,J) + 2.D0*CG*B(J,K) + CG*CG*BK
 A(J,K) = 0.D0
 B(J,K) = 0.D0

DO 200 I = 1, N
 XJ = X(I,J)
 XK = X(I,K)
 X(I,J) = XJ + CG*XK
 X(I,K) = XK + CA*XJ
 200 CONTINUE
 210 CONTINUE
230 CONTINUE

 DO 250 I = 1,N
 EIGV(I) = A(I,I)/B(I,I)
 250 CONTINUE
 <check for convergence>.............
 300 CONTINUE
 331 CONTINUE ! converged
 <clean up>.........

 RETURN
 END

The A and B matrices are positive definite symmetric. For this benchmark,
N=798. (arrays are declared as 840x840), and NSWEEP=20. The inner most
DO loops 120, 150, and 180 are the hot spots of this program. Notice that
these loops are processing the data on the upper triangle of matrix A and B.
Loop 120 access A and B with unit stride, loop 150 with stride of 840, and
loop 180 with unit stride of 840. A stride of 840 elements is accessing data in
memory every 6720 bytes interval. The frequently used programming
techniques of loop interchange (nested loops), matrix transposition, and
cache blocking are not applicable here.

The tuning method for this code is to take advantage that A and B are the
symmetric matrices. Loop 150 can be easily modified to a unit stride data
access loop by working on the lower triangle of the matrices. To make loop
170 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

180 with a unit stride access, the method is to compute this loop upon the
completion of loop 120 and 150 for each column of J (completion of K loop,
DO 210). The modified will require to store CG and CA values, copy one
column of data from lower triangle to upper triangle for every J iteration, and
copy the upper triangle to the lower triangle for each completion of sweep
(DO 300). The essence of the tuned code is shown below.

DO 300 NSWEEP = 1, NSMAX
 EPS=(0.01**NSWEEP)**2
 DO 230 J = 1, NR
 DO 210 K = J+1, N
 IDX(K) = 0 !!!!
 IF (A(K,J)*A(K,J).LT.A(J,J)*A(K,K)*EPS .AND.
 & B(K,J)*B(K,J).LT.B(J,J)*B(K,K)*EPS GOTO 210
 IDX(K) = 1 !!!!
 < compute CA and CG >.....
 CAX(K) = CA !!!
 CGX(K) = CG !!!
 IF (N .GT. 2) THEN
CIBM ... DO THIS LOOP AT UPPER TRIANGLE
 IF (J-1 .GE. 0) THEN
 DO 120 I = 1, J-1
 AJ = A(I,J)
 BJ = B(I,J)
 AK = A(I,K)
 BK = B(I,K)
 A(I,J) = AJ + CG*AK
 B(I,J) = BJ + CG*BK
 A(I,K) = AK + CA*AJ
 B(I,K) = BK + CA*BJ

A(I,J) = AJ + CG*AK
 B(I,J) = BJ + CG*BK
 A(I,K) = AK + CA*AJ
 B(I,K) = BK + CA*BJ
 120 CONTINUE
 END IF
CIBM DO THIS LOOP AT LOWER TRIANGLE
 IF (K+1 .LE. N) THEN
 DO 150 I = K+1, N
 AJ = A(I,J)
 BJ = B(I,J)
 AK = A(I,K)
 BK = B(I,K)
 A(I,J) = AJ + CG*AK
 B(I,J) = BJ + CG*BK
 A(I,K) = AK + CA*AJ
 B(I,K) = BK + CA*BJ
 150 CONTINUE
 END IF
C-------
 END IF

AK = A(K,K)
 BK = B(K,K)
 A(K,K) = AK + 2.D0*CA*A(K,J) + CA*CA*A(J,J)
 B(K,K) = BK + 2.D0*CA*B(K,J) + CA*CA*B(J,J)
 A(J,J) = A(J,J) + 2.D0*CG*A(K,J) + CG*CG*AK
 B(J,J) = B(J,J) + 2.D0*CG*B(K,J) + CG*CG*BK
 A(K,J) = 0.D0
 B(K,J) = 0.D0
C
 DO 200 I = 1, N
Kernels, Codes, and Benchmarks 171

 XJ = X(I,J)
 XK = X(I,K)
 X(I,J) = XJ + CG*XK
 X(I,K) = XK + CA*XJ
 200 CONTINUE
C
 210 CONTINUE
CIBM............. DO LOOP 180 HERE
DO K = J+1,N
 ATMP = A(K,j)
 DO 180 I = K+1,N
 BJ = BTMP
 ATMP = AJ + CGX(I) * A(I,K)
 BTMP = BJ + CGX(I) * B(I,K)
 A(I,K) = A(I,K) + CAX(I)*AJ
 B(I,K) = B(I,K) + CAX(I)*BJ
 180 CONTINUE
 A(K,J) = ATMP
 B(K,J) = BTMP
 ENDDO
CIBM -------- COPY ONE COLUMN TO UPPER TRIANGLE
 DO I = J+1,N
 A(J,I) = A(I,J)
 B(J,I) = B(I,J)
 ENDDO

 230 CONTINUE
C
CIBM ---- COMPLETE A SWEEP...COPY UPPER TRIANGLE TO LOWER
 DO J = 1,N-1
 DO K = J+1,N
 A(K,J) = A(J,K)
 B(K,J) = B(J,K)
 ENDDO
 ENDDO
c
 DO 220 I = 1,N
 EIGV(I) = A(I,I) / B(I,I)
 220 CONTINUE
C
C
 300 CONTINUE

The performance of original and tuned for NSWEEP=20, and N=798 is shown
in Table 31. The timing for tuned code includes the unrolling of loop 120, 150,
and 180 manually (not shown in the above listed code).

Table 31. CPU Time for SUBROUTINE JACOBI, (in Seconds)

M590 66.5Mhz P2SC 160Mhz POWER3 200Mhz

AIX 3, XLF 3.2.2 AIX 4.3, XLF 5.1.1 AIX 4.3, XLF 5.1.1

Original 4408.8 3637.8 2016.7

Tuned 576.4 298.8 285.7
172 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

Appendix A. Industry Standard Benchmarks

In this appendix, the performance of the Model 260 using four widely quoted
industry standard benchmarks will be presented.

A.1 LINPACK Benchmark

Web site: http://www.netlib.org

The LINPACK benchmark measures the performance of a computer system in
solving a system of linear equations. No code modification is allowed for the
matrix order n=100 case. The performance of this case heavily depends on
the ability of FORTRAN compiler and preprocessor making the high order
transformation to generate a BLAS 3 code. The n=1000 case (referred to as
TPP, Toward Peak Performance) allows for replacing LU routines. Thus, the
efficient coding will implement a cache blocking technique. The importance of
high sustained memory bandwidth in today’s application programs is not
presented in this benchmark. Table 32 shows the results of Model 260.

Table 32. LINPACK Performance

The LINPACK DP, n=100 performance differences between P2SC (160Mhz)
and Model 260 is primarily due to the size of L1 cache. The required active
data needed for LINPACK DP, n=100 benchmark is about 90 KB. This fits in
L1 data cache of P2SC processor, but not in Model 260.

P2SC(160Mhz) Model 260, 1 CPU

LINPACK DP MFLOPS, n=100 311.9 233.1

LINPACK TPP MFLOPS 528.0 642.0

% of peak 82.5 80.2

The performance numbers of the Model 260 shown in this Appendix are the
results of pre-GA systems. All Model 260 data shown are estimated values
and presented for illustrative purpose only. The official performance data of
the Model 260 will be submitted by IBM to the organizations responsible for
these benchmarks.

Take Note
© Copyright IBM Corp. 1998 173

A.2 SPEC95

Web site: http://www.specbench.org

System Performance Evaluation Cooperative (SPEC) benchmark suite
consists of 10 FORRAN 77 floating-point programs (SPECfp95) and eight
C-language integer programs (SPECint95). Since the modification of these
benchmark programs are not allowed, the compiler optimization and
FORTRAN preprocessor capability play an important role on floating-point
benchmark. The memory requirements of the benchmark programs is rather
small compared to the actual application programs running today.

Table 33. SPEC95 Performance

A.3 STREAM

Web site: http://www.cs.virginia.edu/stream

The CPU speed growth rate has been outpacing memory speed growth in the
last decade. In the same time period, the problem size of application
programs grew rapidly. The sustained memory bandwidth becomes an
important factor of program performance. STREAM is a simple, synthetic
benchmark that measures the sustainable memory bandwidth. The sustained
memory bandwidth takes into account of memory latency in addition to the
actual data transfer on the memory bus or switch.

Table 34. Sustained MB/s Memory Bandwidth Measured by STREAM

P2SC (160Mhz) Model 260

SPECfp_base95 23.6 27.6

SPCEfp95 26.6 30.1

SPECint_base95 7.77 12.5

SPECint95 8.62 13.2

P2SC(160Mhz) Model 260

Name Kernel bytes/iteration MB/s MB/s

Copy a(i)=b(i) 16 779.2 941.8

Scale a(i)=q*b(i) 16 775.5 985.1

Sum a(i)=b(i)+c(i) 24 883.9 1096.3

Triad a(i)=b(i)+q*c(i) 24 881.2 1102.8
174 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

Industry Standard Benchmarks 175

The STREAM definition of bytes/iteration is based on the memory being
referenced in a kernel. Typically, for a cache based microprocessor, it will
require to transfer a(i) array in these kernel twice (cache load and store back)
on the memory bus or switch. Whereas, the STREAM benchmark counts only
once.

A.4 NAS NPB 1.0

Web site: http://www.nas.nasa.gov//NAS/NPB

NAS (Numerical Aerodynamic Simulation) Parallel Benchmarks NPB 1.0
consists of eight programs. The first five (EP, FT, IS, MG, and CG) are kernel
benchmarks with simple data structure. The simulated application
benchmarks, which compute the numerical solution to the nonlinear partial
differential equations, are LU (direct LU decomposition solver), SP (scalar
pentadiagonal) and BT (block tridiagonal). NPB 1.0 is a pencil and paper
benchmark. The primary objective is the parallel performance. In early NAS
publications, it also includes the serial one CPU data. Table 35 shows the
single CPU performance of LU, SP, and BT on Model 260 as compared to
IBM RS/6000 SP Wide-node2 (77 MHz), data published in "NAS Parallel
Benchmark Results 12-95", by S. Saini and David Bailey, Report NAS-95-02,
December 1995. (Available from the URL listed at the beginning of this
section).

Table 35. NAS NPB 1.0 (LU, SP, BT) Single CPU Performance, Time in Seconds

SP Wide-node2 (77Mhz) Model 260

Class A Class B Class A Class B

LU 501.5 2066.6 235.8 980.3

SP 711.8 3087.0 422.0 1760.7

BT 1130.7 4775.7 654.2 2762.0

176 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

Appendix B. Enabling Vector Codes to POWER3

This appendix gives a brief discussion of the performance considerations
when porting vector codes to the POWER3 superscalar architecture.

In general, a good vector program will perform well on POWER3 when
compiled by XL Fortran Version 5.1.1. For optimal performance on POWER3,
consider the following discussion.

B.1 Data Access

Most of vector codes are programmed for interleaving memory without cache.
Vector load/store operations on a vector computer take place directly from
memory to vector registers. POWER3 uses a cache-based memory
subsystem. As discussed previously, the stride used is important for high
performance on POWER3. Typically, large non-unit stride data access can be
remedied by recoding with the following methods:

 • Interchange loops
 • Transpose matrix and arrays
 • Cache blocking

In a vector computer, many codes introduce vector temporaries to facilitate
vectorization. This is not necessary on POWER3. If it is possible, scratch
scalar temporaries is preferred to avoid non-necessary load/stores.

B.2 Data Dependency and Recursive Code

Vector computers and RISC superscalar computers are both of pipeling
machines. The vector computer pipelines the data stream, each vector
instruction operates on data contained in the vector registers consisting of n
elements, typical of above 64. The key performance factor of a vector
machine is how DO loop can be vectorized. A loop with recursive data access
cannot be vectorized (data depedence is allowed). The performance of vector
and non-vector loop can be as much as a factor of ten. The vectorization
consideration more often than not over shadows the reduction of arithmetic
operations in the loops, for example, cyclic reduction algorithms and
red-black ordering of Gauss-Seidel iteration method.

POWER3, which is a RISC superscalar computer, pipelines the instruction
stream. Each instruction operates on a set of floating-point registers of one
element. The performance penalty due to dependency and recursion in the
loops is less critical than on a vector computer. At most, the penalty is
Enabling Vector Codes to POWER3 177

instruction latency is 3-4 cycles in POWER3. Nevertheless, this data
dependency can be overcome with simple loop unrolling (xlf version 5.1.1
does a good job of this). This will result in a sufficiently large instruction
stream which allows pipeline executions.

B.3 Vector Length

For good performance, the vector computer benefits from a long vector. The
peak performance of a loop is achieved when the vector length is in the order
of 1000. Thus, many vector codes that compute 3D problems by using 1D
arrays need to lengthen the vector length. By doing this, the code can perform
additional computation to check boundary conditions and indexing vectors to
address the 1D array for 3D space. Vector length consideration is significantly
less important on POWER3. (Remember, it pipelines the instructions rather
than data.) A straight forward coding practice is to declare explicitly the
dimension in 3D and to code the computations with three nested loops.

B.4 Conditional Processing

A vector computer handles conditional processing (IF-THEN-ELSE) by
computing both true and false branches, then selects the result based on a
vector mask register which contains the value of the IF condition. POWER3
takes the branch upon the conditional test and execute the instruction within
the target branch. The following code fragment illustrates the difference
between vector computer and POWER3 code.

Code A Code B

eps = 1.d0-100
DO i = 1,n
........

umax =...
umin=...
xx = sqrt(max(0.,x-a))
u=(b+prmin-plmin) / (eps+c-sgn*xx)
xx=sqrt(max(0.,x+a))
z=(b-prmin+plmin) / (eps+c-sgn*xx)
IF (umax.LT.umin) u=z

......
ENDDO

eps=1.d0-100
DO i =1,n
......

umax=...
umin=..
IF (umax.LT.umin) THEN

xx=sqrt(max(0.,x+a)
u=(b-prmin+plmin)

ELSE
xx=sqrt(max(0.,x-a)
u=(b+prmin-plmin)

ENDIF
u = u / (eps+c-sgn*xx)

.......
ENDDO
178 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

For a vector computer, the performance difference of Code A and Code B is
very little. Code B should be used for POWER3.

The Gather/Scatter coding technique is commonly employed in the vector
programs (to minimize the arithmetical operations in the IF clause). In
general, POWER3 programming will also benefit from this coding method.

Many old Cray vector programs may contain the vector merge intrinsic
functions, namely CVMxx. XL FORTRAN supports these functions. For
performance considerations, these functions should be replaced with the
equivalent conditional codes.
Enabling Vector Codes to POWER3 179

180 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

Appendix C. Threads

Thread support, added to AIX in Version 4, divides program-execution control
into two elements:

 • A process is a collection of physical resources required to run the
program, such as memory and access to files.

 • A thread is the execution state of an instance of the program, such as the
current contents of the instruction-address register and the
general-purpose registers. Each thread runs within the context of a given
process and uses that process's resources. Multiple threads can run
within a single process, sharing its resources.

The following sections will give a short introduction to threads in general and
specific AIX thread implementation details. The last sections shows a
program example using both directives and the Fortran POSIX thread
interface. For a more complete description about the AIX thread
implementation please see:

 • AIX Performance Tuning Guide, SR28-5930

 • AIX General Programming Concepts: Writing and Debugging Programs,
SC23-2205

C.1 Symmetric Multiprocessing (SMP) Concepts and Architecture

As with any change that increases the complexity of the system, the use of
multiple processors generates design considerations that must be addressed
for satisfactory operation and performance. The additional complexity gives
more scope for hardware/software trade-offs and requires closer
hardware/software design coordination than in uniprocessor systems. The
different combinations of design responses and trade-offs give rise to a wide
variety of multiprocessor system architectures.

The major design considerations are:

 • Symmetrical verses Asymmetrical Multiprocessors

In an asymmetrical multiprocessor system, the processors are assigned
different roles. One processor may handle I/O, while others execute user
programs, and so forth. Some of the advantages and disadvantages of
this approach are:

 • By restricting certain operations to a single processor, some forms of
data serialization and cache coherency problems (see the following
© Copyright IBM Corp. 1998 181

discussion) can be reduced or avoided. Some parts of the software
may be able to operate as though they were running in a uniprocessor.

 • In some situations, I/O-operation or application-program processing
may be faster because it does not have to contend with other parts of
the operating system or the workload for access to a processor. In
other situations, I/O-operation or application-program processing can
be slowed because not all of the processors are available to handle
peak loads.

 • The existence of a single processor handling specific work creates a
unique point of failure for the system as a whole.

In a symmetric multiprocessor system, all of the processors are essentially
identical and perform identical functions:

 • All of the processors work with the same virtual and real address
spaces.

 • Any processor is capable of running any thread in the system.

 • Any processor can handle any external interrupt. (Each processor
handles the internal interrupts generated by the instruction stream it is
executing.)

 • Any processor can initiate an I/O operation.

This interchangeability means that all of the processors are potentially
available to handle whatever needs to be done next. The cost of this
flexibility is primarily borne by the hardware and software designers,
although symmetry also makes the limits on the multiprocessability of the
workload more noticeable.

The RS/6000 family contains, and AIX Version 4 supports, only symmetric
multiprocessors.

C.2 Thread Implementation Model

There are various thread implementation models. One model is the
library-thread model. In such a model, the threads of a process are not visible
to the operating system kernel, and the threads are not kernel scheduled
entities. The process is the only kernel scheduled entity. The process is
scheduled onto the processor by the kernel according to the scheduling
attributes of the process. The threads are scheduled onto the single kernel
scheduled entity (the process) by the run-time library according to the
scheduling attributes of the threads. This is the model of threads provided on
AIX Version 3.
182 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

At the other end of the spectrum is the kernel-thread model. In this model, all
threads are visible to the operating system kernel. Thus, all threads are
kernel scheduled entities, and all threads can concurrently execute. The
threads are scheduled onto processors by the kernel according to the
scheduling attributes of the threads. This model is the model provided in AIX
Version 4.1 and AIX Version 4.2.

AIX Version 4.3 uses a hybrid model that offers the speed of library threads
and the concurrency of kernel threads. In hybrid models, a process has a
varying number of kernel scheduled entities associated with it. It also has a
potentially much larger number of library threads associated with it. Some
library threads may be bound to kernel scheduled entities, while the other
library threads are multiplexed onto the remaining kernel scheduled entities.
For this reason, a hybrid model is referred to as a M:N model. In this model,
the process can have multiple concurrently executing threads; specifically, it
can have as many concurrently executing threads as it has kernel scheduled
entities.

In order to make the switch to thread programming easier, AIX introduced
threads API models based on preliminary drafts of the now-official IEE POSIX
standard. AIX 4.3 is the first release to conform fully to the IEEE POSIX
standard for threads APIs, IEEE POSIX 1003.1-1996.

C.3 Understanding Threads

A thread is an independent flow of control that operates within the same
address space as other independent flows of controls within a process. In
previous versions of AIX, and in most of UNIX systems, thread and process
characteristics are grouped into a single entity called a process. In other
operating systems, threads are sometimes called lightweight processes, or
the meaning of the word thread is sometimes slightly different.

C.3.1 Threads and Processes

In traditional single-threaded process systems, a process has a set of
properties. In multi-threaded systems, these properties are divided between
processes and threads.

C.3.1.1 Process Properties
A process in a multi-threaded system is the changeable entity. It must be
considered as an execution frame. It has all traditional process attributes,
such as:

 • Process ID, process group ID, user ID, and group ID
Threads 183

 • Environment

 • Working directory

A process also provides a common address space and common system
resources:

 • File descriptors

 • Signal actions

 • Shared libraries

 • Inter-process communication tools (such as message queues, pipes,
semaphores, or shared memory)

C.3.1.2 Thread Properties
A thread is the schedulable entity. It has only those properties that are
required to ensure its independent flow of control. These include the following
properties:

 • Stack

 • Scheduling properties (such as policy or priority)

 • Set of pending and blocked signals

 • Some thread-specific data

An example of thread-specific data is the error indicator, errno. In
multi-threaded systems, errno is no longer a global variable, but usually, a
subroutine returning a thread-specific errno value. Some other systems may
provide other implementations of errno.

Threads within a process must not be considered as a group of processes. All
threads share the same address space. This means that two pointers having
the same value in two threads refer to the same data. Also, if any thread
changes one of the shared system resources, all threads within the process
are affected. For example, if a thread closes a file, the file is closed for all
threads.

C.3.1.3 The Initial Thread
When a process is created, one thread is automatically created. This thread
is called the initial thread. It ensures the compatibility between the old
processes with a unique implicit thread and the new multi-threaded
processes. The initial thread has some special properties, not visible to the
programmer, that ensure binary compatibility between the old single-threaded
programs and the multi-threaded operating system. It is also the initial thread
that executes the main routine in multi-threaded programs.
184 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

C.3.2 Threads Implementation

A thread is the schedulable entity, meaning that the system scheduler
handles threads. These threads, known by the system scheduler, are strongly
implementation-dependent. To facilitate the writing of portable programs,
libraries provide another kind of thread.

C.3.2.1 Kernel Threads
A kernel thread is a kernel entity, like processes and interrupt handlers; it is
the entity handled by the system scheduler. A kernel thread runs within a
process, but can be referenced by any other thread in the system. The
programmer has no direct control over these threads, unless writing kernel
extensions or device drivers. See AIX Kernel Extensions and Device Support
Programming Concepts, SC23-2207 for more information about kernel
programming.

C.3.2.2 User Threads
A user thread is an entity used by programmers to handle multiple flows of
controls within a program. The API for handling user threads is provided by a
library, the threads library. A user thread only exists within a process; a user
thread in process A cannot reference a user thread in process B. The library
uses a proprietary interface to handle kernel threads for executing user
threads. The user threads API, unlike the kernel threads interface, is part of a
portable programming model. Thus, a multi-threaded program developed on
an AIX system can easily be ported to other systems.

On other systems, user threads are simply called threads, and lightweight
process refers to kernel threads.

C.3.3 Thread Scheduling

In previous versions of AIX, the CPU scheduler dispatched processes. In AIX
Version 4, the scheduler dispatches threads. In the SMP environment, the
availability of thread support makes it easier and less expensive to implement
SMP-exploiting applications. Forking multiple processes to create multiple
flows of control is cumbersome and expensive, since each process has its
own set of memory resources and requires considerable system processing
to set up. Creating multiple threads within a single process requires less
processing and uses less memory.

Thread support exists at two levels:

libpthreads.a support in the application program environment

kernel thread support
Threads 185

C.3.3.1 Default Scheduler Processing of Migrated Workloads
The new division between processes and threads is invisible to existing
programs. In fact, workloads migrated directly from earlier releases of AIX
create processes as before. Each new process is created with a single thread
(the initial thread) that contends for the CPU with the threads of other
processes. The default attributes of the initial thread, in conjunction with the
new scheduler algorithms, minimize changes in system dynamics for
unchanged workloads.

Priorities can be manipulated with the nice and renice commands and the
setpri and setpriority system calls, as before. The scheduler allows a given
thread to run for at most one time slice (normally 10ms) before forcing it to
yield to the next dispatchable thread of the same or higher priority.

C.3.3.2 Scheduling Algorithm Variables
Several variables affect the scheduling of threads. Some are unique to thread
support; others are elaborations of process-scheduling considerations:

 • Priority:

A thread's priority value is the basic indicator of its precedence in the
contention for processor time.

 • Scheduler run queue position:

A thread's position in the scheduler's queue of dispatchable threads
reflects a number of preceding conditions.

 • Scheduling policy:

This thread attribute determines what happens to a running thread at the
end of the time slice.

 • Contention scope:

A thread's contention scope determines whether it competes only with the
other threads within its process or with all threads in the system. A pthread
created with process contention scope is scheduled by the library, while
those created with system scope are scheduled by the kernel. The library
scheduler uses a pool of kernels threads to schedule pthreads with
process scope.

Generally, pthreads should be created with system scope, if they are
performing I/O. Process scope is useful, when there is a lot of
intra-process synchronizations. Contention scope is a libpthreads.a
concept.
186 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

 • Processor affinity:

The degree to which affinity is enforced affects performance.

The combinations of these considerations can seem complex, but there are
essentially three distinct approaches from which to choose in managing a
given process:

 • Default:

The process has one thread, whose priority varies with CPU consumption
and whose scheduling policy, SCHED_OTHER, is comparable to the AIX
Version 3 algorithm.

 • Process-level control:

The process can have one or more threads, but the scheduling policy of
those threads is left as the default SCHED_OTHER, which permits the use
of the existing AIX Version 3 methods of controlling nice values and fixed
priorities. All of these methods affect all of the threads in the process
identically. If setpri() is used, the scheduling policy of all of the threads in
the process is set to SCHED_RR.

 • Thread-level control:

The process can have one or more threads. The scheduling policy of
these threads is set to SCHED_RR or SCHED_FIFO, as appropriate. The
priority of each thread is fixed and is manipulated with thread-level
subroutines.

C.3.3.3 Scheduling Environment Variables
Within the libpthreads.a framework, a series of tuning knobs have been
provided that may impact the performance of the application. When using
XL Fortran, most of the following environment variables can and should be
controlled by the environment variable XLSMPOPTS, described in section
4.8, “XLSMPOPTS Environment Variable” on page 57. A case where you

The default for the contention scoop on all IBM RS/6000 machines is
processor scope. There are two ways to change this behavior:

1. Use of pthread_attr_setscope() in the code.

2. Set the environment variable AIXTHREAD_SCOPE to S.

Notice
Threads 187

cannot use XLSMPOPTS would be to change the default of the contention
scope. The environment variables are:

 • SPINLOOPTIME=n, where n is the number of times to retry a busy lock
before yielding to another processor. n must be a positive value.

 • YIELDLOOPTIME=n, where n is the number of times to yield the
processor before blocking on a busy lock. n must be a positive value. The
processor is yielded to another kernel thread, assuming there is another
runnable one with sufficient priority.

 • AIXTHREAD_SCOPE={P|S}, where P signifies process based contention
scope and S signifies system based contention scope. Either P or S
should be specified. The braces are provided for syntactic reasons only.
The use of this environment variable impacts only those threads created
with the default attribute. The default attribute is employed when the attr
parameter to pthread_create is NULL.

The following environment variables impact the scheduling of pthreads
created with process based contention scope:

 • AIXTHREAD_MNRATIO=p:k, where k is the number of kernel threads that
should be employed to handle p runnable pthreads. This environment
variable controls the scaling factor of the library. This ratio is used when
creating and terminating pthreads.

 • AIXTHREAD_SLPRATIO=k:p, where k is the number of kernel threads
that should be held in reserve for p sleeping pthreads. In general, fewer
kernel threads are required to support sleeping pthreads, since they are
generally woken one at a time when processing locks and/or events. This
conserves kernel resources.

 • AIXTHREAD_MINKTHREADS=n, where n is the minimum number of
kernel threads that should be used. The library scheduler will not reclaim
kernel threads below this figure. A kernel thread may be reclaimed at
virtually any point. Generally, a kernel thread is targeted as a result of a
pthread terminating.

C.3.4 Thread Models and Virtual Processors

User threads are mapped to kernel threads by the threads library. The way
this mapping is done is called the thread model. There are three possible
thread models, corresponding to three different ways to map user threads to
kernel threads:

 • M:1 model

 • 1:1 model
188 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

 • M:N model.

The mapping of user threads to kernel threads is done using virtual
processors. A virtual processor (VP) is a library entity that is usually implicit.
For a user thread, the virtual processor behaves as a CPU for a kernel
thread. In the library, the virtual processor is a kernel thread or a structure
bound to a kernel thread.

In the M:1 model, all user threads are mapped to one kernel thread; all user
threads run on one VP. The mapping is handled by a library scheduler. All
user threads programming facilities are completely handled by the library.
This model can be used on any system, especially on traditional
single-threaded systems. Figure 28 illustrates this model.

Figure 28. M:1 Threads Model

In the 1:1 model, each user thread is mapped to one kernel thread; each user
thread runs on one VP. Most of the user threads programming facilities are
directly handled by the kernel threads. Figure 29 illustrates this model.

User Threads

Library Scheduler

VP

Threads Library

Kernel Thread
Threads 189

Figure 29. 1:1 Threads Model

In the M:N model, all user threads are mapped to a pool of kernel threads; all
user threads run on a pool of virtual processors. A user thread may be bound
to a specific VP, as in the 1:1 model. All unbound user threads share the
remaining VPs. This is the most efficient and most complex thread model; the
user threads programming facilities are shared between the threads library
and the kernel threads. Figure 30 illustrates this model.

User Threads

VP
Threads Library

Kernel Threads

VP VP
190 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

Figure 30. M:N Threads Model

C.3.5 Contention Scope and Concurrency Level

The contention scope of a user thread defines how it is mapped to a kernel
thread. There are two possible contention scopes:

 • System contention scope, sometimes called global contention scope

A system contention scope user thread is a user thread that is directly
mapped to one kernel thread. All user threads in a 1:1 thread model have
system contention scope.

 • Process contention scope, sometimes called local contention scope.

A process contention scope user thread is a user thread that shares a
kernel thread with other (process contention scope) user threads in the
process. All user threads in a M:1 thread model have process contention
scope.

In an M:N thread model, user threads can have either system or process
contention scope. In the previous figure, for example, the user thread on the
left side has system contention scope; the other ones all have process

User Threads

Library Scheduler

VP

Threads Library

Kernel Threads

VPVP
Threads 191

contention scope. Therefore, an M:N thread model is often referred as a
mixed-scope model.

The concurrency level is a property of M:N threads libraries. It defines the
number of VPs used to run the process contention scope user threads. This
number cannot exceed the number of process contention scope user threads,
and is usually dynamically set by the threads library. The system also sets a
limit to the number of available kernel threads.

C.3.6 libpthreads.a POSIX Threads Library

AIX provides a threads library, called libpthreads.a, based on the POSIX
1003.1c industry standard for a portable user threads API. Any program
written for use with a POSIX thread library can easily be ported for use with
another POSIX threads library; only the performance and very few
subroutines of the threads library are implementation-dependent. For this
reason, multi-threaded programs written for this version of AIX will work on
any future version of AIX.

The XL Fortran V5 provides an interface to the pthread library called
f_pthread. It is implemented as a Fortran 90 module.The naming convention
is to use the prefix f_ before the corresponding AIX pthread routine name or
type definition name. For more information about the f_pthread
implementation, see the 4.10, “OpenMP Porting” on page 65 and the XL
Fortran Language Reference, SC09-2607.

C.3.7 libpthreads_compat.a POSIX Draft 7 Threads Library

AIX provides binary compatibility for existing multi-threads applications that
were coded to Draft 7 of the POSIX thread standard. These applications will
run without re-linking.

The libpthreads_compat.a library is actually provided for program
development. AIX Version 4.3 provides program support for both Draft7 of the
POSIX Thread Standard and Xopen Version 5 Standard, which includes the
final POSIX 1003.1c Pthread Standard.

IBM’s default value for the detached state of a thread is
PTHREAD_CREATE_DETACHED (not joinable). This is different than other
platforms, such as SUN and SGI.

Take Note
192 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

C.4 A Simple Thread Program

The following sections will compare the directive and POSIX thread
approach. The example code, which is made thread-enabled, is a reduction
of an array:

PROGRAM SEQUENTIAL
IMPLICIT NONE
INTEGER, PARAMETER :: IMAX=10000000
INTEGER(4) :: i
REAL(8) :: MYSUM
REAL(8), DIMENSION(IMAX) :: A

CALL INIT(A,IMAX)

MYSUM=0.D0
DO I=1,IMAX
MYSUM=MYSUM+A(I)
END DO

PRINT *,’SUM=’,MYSUM
END PROGRAM

The subroutine INIT sets the array A to A(I)=SIN(3.1415*I/N).

C.4.1 Using SMP Directives

This is a very simple test case and the compiler does not need any directives
to parallelize it. By compiling with

xlf90_r -qsmp -O3 -qarch=pwr3 -qreport=smplist simple.f

the compiler produces a parallelization report for the main loop showing the
basic idea of the parallelization:

mysum = 0d0
ScRed_12 = mysum
ScRed_13 = dble(0)
ScRed_14 = dble(0)
ScRed_15 = dble(0)
C 1585-501 Original Source Line 11

PARALLEL do i=1,10000000,4
 ScRed_12 = ScRed_12 + a(i)
 ScRed_13 = ScRed_13 + a(i + 1)
 ScRed_14 = ScRed_14 + a(i + 2)
 ScRed_15 = ScRed_15 + a(i + 3)
 end do
mysum = ScRed_12 + ScRed_13 + ScRed_14 + ScRed_15
Threads 193

As you see, the compiler recognizes the parallelism in the loop, unrolls the
loop four times, introduces four temporary variables, and finally does the
reduction. Please note that the above listing is only a report and does not
necessarily show how the compiler finally optimizes the code. A deeper
analysis and the use of the compiler flag -qlist shows that the compiler finally
unrolled the loop 16 times.

For some programs, it make sense to compile with -qsmp=noauto telling the
compiler not to parallelize loops without directives. This could be useful if
your code contains a lot of loops, where the compiler makes the wrong
decision to parallelize them. In this case, you have to tell the compiler which
loop to parallelize. In the above example code, you could add one of the
following directives:

 • !SMP$ PARALLEL DO REDUCTION(MYSUM)

 • !SMP$ INDEPENDENT

 • !SMP$ ASSERT(NODEPS)

before the loop. Compiling this with:

xlf90_r -qsmp=noauto -O3 -qarch=pwr3 -qreport=smplist simple.f

produces the same parallelization as above.

C.4.2 Using the Fortran PThread Module

When you want to use pthreads in Fortran, IBM provides an interface to the
pthread library, as described in section 4.9, “OpenMP Porting Considerations”
on page 58. As an example using this module, the sum program from the last
section is programmed using Fortran pthreads. The example is written so that
it easy to understand; it is not optimized in any way. The program discussed
is located near the end of this section.

Line Comment

1-5 All global variables are put into a module.

9 To use the Fortran 90 interface to the POSIX library you have to use
this module.

14-15 These are the thread structures needed in this case.

22-23 Here the attribute for the threads are initialized. The standard values
are used but for the detachstate, which is set to
PTHREAD_CREATE_UNDETACHED in order to be able to synchronize the
threads.

26-31 The loop indices of each thread are calculated.
194 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

33-38 The threads are started. Each thread gets three arguments:

 • A number to identify itself. The thread id thread(i) could also be used
together with POSIX functions f_pthread_equal() and f_pthread_self().

 • The start and end index of the loop.

40-42 The synchronization. After this loop is finished, all threads but the
initial one are gone.

64 This line could be a potential performance problem as it is likely to
introduce false sharing between the threads.

False sharing occurs as two threads running on two different CPUs use two
different data that are located in the same cache line. If one threads writes to
his data, which is located in its cache, the whole cache line has to be
transferred to the second CPU, even if the second thread doesn’t use this
data.

There are several solutions to this problem:

 • Remove the array and do the update directly on the variable ENDSUM.
This has to be done in a CRITICAL SECTION which also introduces a
performance problem.

 • Pad the array. That way each element is in its own cache line. This can be
done with a TYPE statement, but will increase the memory use of the
program.

The loop calculating the sum is moved into the subroutine TSUM, which is
started by the F_PTHREAD_CREATE() call.

When linking a thread enabled program, you should use the xlf90_r (or xlf_r)
call to the linker, in order to make sure that you link with the thread safe
system libraries. Please note that the program now has over 60 lines of code
compared to 16 lines in the version using Fortran directives.

+1 MODULE TDATA
+2 INTEGER, PARAMETER :: NRT=2, IMAX=10000000
+3 REAL(8), DIMENSION(IMAX) :: A
+4 REAL(8) :: MYSUM(NRT)
+5 END MODULE TDATA
+6
+7
+8 PROGRAM SEQUENTIAL
+9 USE F_PTHREAD
+10 USE TDATA
+11 IMPLICIT NONE
+12 INTEGER(4) :: I, IERR
Threads 195

+13 ! USED BY THE THREADS :
+14 TYPE(F_PTHREAD_T) :: THREAD(NRT)
+15 TYPE(F_PTHREAD_ATTR_T) :: ATTR
+16 INTEGER(4) :: ARG(3, NRT), IBEG(NRT), IEND(NRT)
+17 REAL(8) :: ENDSUM
+18 EXTERNAL TSUM
+19
+20 CALL INIT(A,IMAX)
+21
+22 IERR = F_PTHREAD_ATTR_INIT(ATTR)
+23 IERR = F_PTHREAD_ATTR_SETDETACHSTATE(ATTR,

PTHREAD_CREATE_UNDETACHED)
+24
+25 ! SET UP THE LOOP COUNTERS
+26 IBEG(1)=1
+27 DO I=1,NRT-1
+28 BEG(I+1)=IBEG(I)+(IMAX/NRT)
+29 IEND(I)=IBEG(I+1)-1
+30 END DO
+31 IEND(NRT)=IMAX
+32
+33 DO I=1,NRT
+34 ARG(1,I)=I
+35 ARG(2,I)=IBEG(I)
+36 ARG(3,I)=IEND(I)
+37 IERR=F_PTHREAD_CREATE(THREAD(I),ATTR,FLAG_DEFAULT,TSUM,ARG(1,I))
+38 END DO
+39
+40 ! WAIT FOR THE THREADS TO FINISH
+41 DO I=1,NRT
+42 IERR = F_PTHREAD_JOIN(THREAD(I))
+43 END DO
+44
+45 ! BUILD THE SUM
+46 ENDSUM=0.D0
+47 DO I=1,NRT
+48 ENDSUM=ENDSUM+MYSUM(I)
+49 END DO
+50
+51 PRINT *,’SUM=’,ENDSUM
+52 END PROGRAM
+53
+54 SUBROUTINE TSUM(ARG)
+55 USE TDATA
+56 REAL(8),AUTOMATIC :: PART_SUM
+57 INTEGER(4) :: I, ARG(3)
+58
196 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

+59 PART_SUM=0.D0
+60 DO I=ARG(2),ARG(3)
+61 PART_SUM=PART_SUM+A(I)
+62 END DO
+63 MYSUM(ARG(1))=PART_SUM
+64 END SUBROUTINE

C.4.3 Conclusions

This simple example shows that you should use the compiler directives if
possible. There are several advantages to do so:

 • The code is easier to program.

 • Directives are less error prone than direct pthread programming.

 • The code is easier to read.

 • As the directives are hidden in comments, the code can still be compiled
and run on a system that doesn’t have a thread library.

 • You can change the scheduling of a loop, without changing the code.

The advantages of the pthread library are mainly performance and the ability
to parallel the code on a higher level than loops. Please note that the Fortran
pthread interface it is not an industry standard, even if it is as close to the
POSIX standard as a Fortran module can be.

As mentioned in section 4.9, “OpenMP Porting Considerations” on page 58,
you can mix both f_pthreads and directives, so you are not forced to use one
of the alternatives.
Threads 197

198 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

Appendix D. Special Notices

This publication is intended for developers of numerically intensive code for
the RISC System/6000, for business partners and sales specialists wanting
supporting metrics of the POWER3 performance potentials, and for technical
specialists who require detailed product information to help demonstrate IBM’s
industry leading technology. See the PUBLICATIONS section of the IBM
Programming Announcement for Fortran Version 5.1.1 for more information
about what publications are considered to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only IBM’s product, program, or service may be
used. Any functionally equivalent program that does not infringe any of IBM’s
intellectual property rights may be used instead of the IBM product, program
or service.

Information in this book was developed in conjunction with use of the
equipment specified, and is limited in application to those specific hardware
and software products and levels.

IBM may have patents or pending patent applications covering subject matter
in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to the IBM
Director of Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood,
NY 10594 USA.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact IBM
Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
("vendor") products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy or completeness. The use of this
information or the implementation of any of these techniques is a customer
responsibility and depends on the customer’s ability to evaluate and integrate
them into the customer’s operational environment. While each item may have
© Copyright IBM Corp. 1998 199

been reviewed by IBM for accuracy in a specific situation, there is no
guarantee that the same or similar results will be obtained elsewhere.
Customers attempting to adapt these techniques to their own environments
do so at their own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of
these Web sites.

Any performance data contained in this document was determined in a
controlled environment, and therefore, the results that may be obtained in
other operating environments may vary significantly. Users of this document
should verify the applicable data for their specific environment.

The following document contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the
examples contain the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and
addresses used by an actual business enterprise is entirely coincidental.

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of
including these reference numbers is to alert IBM customers to specific
information relative to the implementation of the PTF when it becomes
available to each customer according to the normal IBM PTF distribution
process.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc.

Java and HotJava are trademarks of Sun Microsystems, Incorporated.

Microsoft, Windows, Windows NT, and the Windows 95 logo are trademarks
or registered trademarks of Microsoft Corporation.

AIX® AIX/6000®
DB2® Power PC 603®
Power PC 604® PowerPC 601®
PowerPC 603® PowerPC 601e®
POWER2 Architecture POWER3 Architecture
RISC System/6000® RS/6000®
200 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

PC Direct is a trademark of Ziff Communications Company and is used
by IBM Corporation under license.

Pentium, MMX, ProShare, LANDesk, and ActionMedia are trademarks or
registered trademarks of Intel Corporation in the U.S. and other
countries.

UNIX is a registered trademark in the United States and other
countries licensed exclusively through X/Open Company Limited.

Other company, product, and service names may be trademarks or
service marks of others.
Special Notices 201

202 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

Appendix E. Related Publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

E.1 International Technical Support Organization Publications

For information on ordering these ITSO publications see “How to Get ITSO
Redbooks” on page 207.

 • AIX Version 4.3 Differences Guide, SG24-2014

 • AIX 64-Bit Performance in Focus, SG24-5103

 • RS/6000 Models E30, F40, F50, and H50 Handbook, SG24-5143

E.2 Redbooks on CD-ROMs

Redbooks are also available on CD-ROMs. Order a subscription and
receive updates 2-4 times a year at significant savings.

E.3 Other Publications

These publications are also relevant as further information sources:

 • RISC System/6000 Technology, SA23-2619

 • PowerPC and POWER2: Technical Aspects of the New IBM RISC
System/6000, SA23-2737

 • XL Fortran for AIX Language Reference Version 5 Release 1, SC09-2607

CD-ROM Title Subscription
Number

Collection Kit
Number

System/390 Redbooks Collection SBOF-7201 SK2T-2177
Networking and Systems Management Redbooks Collection SBOF-7370 SK2T-6022
Transaction Processing and Data Management Redbook SBOF-7240 SK2T-8038

Lotus Redbooks Collection SBOF-6899 SK2T-8039
Tivoli Redbooks Collection SBOF-6898 SK2T-8044
AS/400 Redbooks Collection SBOF-7270 SK2T-2849

RS/6000 Redbooks Collection (HTML, BkMgr) SBOF-7230 SK2T-8040
RS/6000 Redbooks Collection (PostScript) SBOF-7205 SK2T-8041
RS/6000 Redbooks Collection (PDF Format) SBOF-8700 SK2T-8043

Application Development Redbooks Collection SBOF-7290 SK2T-8037
© Copyright IBM Corp. 1998 203

 • XL Fortran for AIX User’s Guide Version 5 Release 1, SC09-2606

 • D. Bacon, S. Graham, and O. Sharp, “Compiler Transformations for
High-Performance Computing,” ACM Computing Surveys, Vol. 26, 1994

 • Y. Aoyama, "RS/6000 Program Tuning Vol. 3: SMP Fortran" (1998, in
Japanese) (contact nakanoj@jp.ibm.com)

 • D. Kulkarni, S. Tandri, L. Martin, N. Copty, R. Silvera, X. Tian, X. Xue, and
J. Wang, "XL Fortran Compiler for IBM SMP Systems," AIXpert Magazine,
December 1997

 • Optimization and Tuning Guide for Fortran, C, and C++", SC09-1705

 • General Atomic and Molecular Electronic Structure System, M.W.Schmidt,
K.K.Baldridge, J.A.Boatz, S.T.Elbert, M.S.Gordon, J.H.Jensen, S.Koseki,
N.Matsunaga, K.A.Nguyen, S.Su, T.L.Windus, M.Dupuis, J.A.Montgomery
J. Comput. Chem., 14, 1347-63(1993).

 • AIX Performance Tuning Guide, SR28-5930

 • AIX General Programming Concepts: Writing and Debugging Programs,
SC23-2205

E.4 Information Available on the Internet

The following information is available on-line.

 • http://www.openmp.org/

 • http://www.netlib.org/blas/gemm_based/ssgemmbased.tgz

 • http://www.doe.org

 • http://www.llnl.gov/asci/

 • http://www.netlib.org/scalapack/

 • http://www.rs6000.ibm.com/software/Apps/essl.html

 • http://www.rs6000.ibm.com/software/sp_products/esslpara.html

 • http://www.rs6000.ibm.com/resource/aix_resource/sp_books/

 • http://www.software.ibm.com/ad/fortran/xlfortran/cray.htm

 • http://www.rs6000.ibm.com/software/sp_products/performance/

 • http://www.rs6000.ibm.com/resource/technology/MASS/

 • http://www.llnl.gov/asci_benchmarks/asci/limited/ppm/sppm_readme.html

 • http://www.netlib.org/blas/gemm_based/ssgemmbased.tgz

 • http://www.msg.ameslab.gov/GAMESS/GAMESS.html
204 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

 • http://firewww.avl.co.at

 • http://www.radioss.com

 • http://www.netlib.org

 • http://www.specbench.org

 • http://www.cs.virginia.edu/stream

 • http://www.nas.nasa.gov//NAS/NPB

 • http://firewww.arl.co.at/html/346.htm
Related Publications 205

206 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

How to Get ITSO Redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks,
CD-ROMs, workshops, and residencies. A form for ordering books and CD-ROMs is also provided.

This information was current at the time of publication, but is continually subject to change. The latest
information may be found at http://www.redbooks.ibm.com/.

How IBM Employees Can Get ITSO Redbooks

Employees may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and
information about redbooks, workshops, and residencies in the following ways:

 • Redbooks Web Site on the World Wide Web

http://w3.itso.ibm.com/

 • PUBORDER – to order hardcopies in the United States

 • Tools Disks

To get LIST3820s of redbooks, type one of the following commands:

 TOOLCAT REDPRINT
 TOOLS SENDTO EHONE4 TOOLS2 REDPRINT GET SG24xxxx PACKAGE
 TOOLS SENDTO CANVM2 TOOLS REDPRINT GET SG24xxxx PACKAGE (Canadian users only)

To get BokkManager BOOKs of redbooks, type the following command:

 TOOLCAT REDBOOKS

To get lists of redbooks, type the following command:

 TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET ITSOCAT TXT

To register for information on workshops, residencies, and redbooks, type the following command:

 TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ITSOREGI 1998

 • REDBOOKS Category on INEWS

 • Online – send orders to: USIB6FPL at IBMMAIL or DKIBMBSH at IBMMAIL

For information so current it is still in the process of being written, look at "Redpieces" on the
Redbooks Web Site (http://www.redbooks.ibm.com/redpieces.html). Redpieces are redbooks in
progress; not all redbooks become redpieces, and sometimes just a few chapters will be published
this way. The intent is to get the information out much quicker than the formal publishing process
allows.

Redpieces
© Copyright IBM Corp. 1998 207

How Customers Can Get ITSO Redbooks

Customers may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and
information about redbooks, workshops, and residencies in the following ways:

 • Online Orders – send orders to:

 • Telephone Orders

 • Mail Orders – send orders to:

 • Fax – send orders to:

 • 1-800-IBM-4FAX (United States) or 408 256 5422 (Outside USA) – ask for:

Index # 4421 Abstracts of new redbooks
Index # 4422 IBM redbooks
Index # 4420 Redbooks for last six months

 • On the World Wide Web

In United States
In Canada
Outside North America

IBMMAIL
usib6fpl at ibmmail
caibmbkz at ibmmail
dkibmbsh at ibmmail

Internet
usib6fpl@ibmmail.com
lmannix@vnet.ibm.com
bookshop@dk.ibm.com

United States (toll free)
Canada (toll free)

1-800-879-2755
1-800-IBM-4YOU

Outside North America
(+45) 4810-1320 - Danish
(+45) 4810-1420 - Dutch
(+45) 4810-1540 - English
(+45) 4810-1670 - Finnish
(+45) 4810-1220 - French

(long distance charges apply)
(+45) 4810-1020 - German
(+45) 4810-1620 - Italian
(+45) 4810-1270 - Norwegian
(+45) 4810-1120 - Spanish
(+45) 4810-1170 - Swedish

IBM Publications
Publications Customer Support
P.O. Box 29570
Raleigh, NC 27626-0570
USA

IBM Publications
144-4th Avenue, S.W.
Calgary, Alberta T2P 3N5
Canada

IBM Direct Services
Sortemosevej 21
DK-3450 Allerød
Denmark

United States (toll free)
Canada
Outside North America

1-800-445-9269
1-800-267-4455
(+45) 48 14 2207 (long distance charge)

Redbooks Web Site
IBM Direct Publications Catalog

http://www.redbooks.ibm.com
http://www.elink.ibmlink.ibm.com/pbl/pbl

For information so current it is still in the process of being written, look at "Redpieces" on the
Redbooks Web Site (http://www.redbooks.ibm.com/redpieces.html). Redpieces are redbooks in
progress; not all redbooks become redpieces, and sometimes just a few chapters will be published
this way. The intent is to get the information out much quicker than the formal publishing process
allows.

Redpieces
208 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

IBM Redbook Order Form

Please send me the following:

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

Title Order Number Quantity

First name Last name

Company

Address

City Postal code

Telephone number Telefax number VAT number

Invoice to customer number

Country

Credit card number

Credit card expiration date SignatureCard issued to
 209

210 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

List of Abbreviations

API Application Program
Interface

ASCI Accelerated Strategic
Computing Initiative

BCT Branch on Count

BHT Branch History Table

BLAS Basic Linear Algebra
Subroutines

BLACS Basic Linear Algebra
Communications
Subroutines

BT Block Tridiagonal

BTAC Branch Target Address
Cache

CCR Condition-Code
Register

CFD Computational Fluid
Dynamics

CPU Central Processing Unit

DASD Direct Access Storage
Device

DFL Divide Float

DIMM Dual Inline Memory
Modules

DOE Department of Energy

ESSL Engineering and
Scientific Subroutine
Library

FMA Floating-point
Multiply-Add

FPR Floating-Point Register

FPU Floating Point Unit

GAMESS General Atomic and
Molecular Electronic
Structure System

GPR General-Purpose
Register
© Copyright IBM Corp. 1998
ITSO International Technical
Support Organization

LFD Load Float Double

LLNL Lawrence Livermore
National Laboratory

LRU Least Recently Used

MASS Mathematical
Acceleration
Subsystem

MFLOPS Millions of
Floating-Point
Operations per Second

MPI Message Passing
Interface

MTU Maximum Transmission
Unit

NUS Numerical
Aerodynamic
Simulation

NWP Numerical Weather
Prediction

PBLAS Parallel Basic Linear
Algebra Subroutines

PPM Piecewise Parabolic
Method

P2SC POWER2 Single/Super
Chip

RISC Reduced
Instruction-Set
Computer

RSC RISC Single Chip

SPEC System Performance
Evaluation Cooperative

SOI Silicon-on-Insulator

SMP Symmetric
Multiprocessing
 211

SP IBM RS/6000 Scalable
POWERparallel
Systems

STFDU Store Float Double with
Update

TLB Translation Lookaside
Buffer

TPP Toward Peak
Performance

VP Virtual Processor

XLF XL Fortran

VMM Virtual Memory
Manager
212 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

Index

Symbols
/etc/security/limits 21
/etc/xlf.cfg 34
_8 24

Numerics
1:1 model 189
2x2 unrolling 143
32-bit mode 21, 33
4x4 unrolling 143
64-bit mode 22

A
abbreviations 211
accuracy 73
acronyms 211
address space

real 182
virtual 182

affinity 187
aggregate rate 97
AIXTHREAD_MINKTHREADS 188
AIXTHREAD_MNRATIO 188
AIXTHREAD_SCOPE 187, 188
AIXTHREAD_SLPRATIO 188
algorithm 73
allocatable array 20
anti-dependence 37, 41
API

OpenMP 58
Architecture 119
architectures

different 65
performance 65

array dimension
formal 164

ASCI project 59
ASCI sPPM 83, 150
assembler language 127
ASSERT 194
ASSERT directive 47
asynchronous send and receive 84
automatic 20, 34
© Copyright IBM Corp. 1998
B
Banded Linear Algebraic 66, 68
bindprocessor 161
BLACS 157
BLAS 150
BLAS L1 67
BLAS L2 67
BLAS L3 68
block cyclic scheduling 54
block scheduling 54
Blocking 132
bss 20, 33
bubble sort 73

C
Cache 119
cache

application performance 165
associative 88
interleaving 7
L1 88, 97

stride versus loop count 104
visual representation 103

L2 89, 98
large stride effects 102
line size 8
second level 165
size 7

Cache line prefetch 120
Cache lines 119
CFD 162
chaos theory 103
code

complexity 65
Coding Practices for Performance 115
Coding Practices to be Avoided 115
COMMON

THREADLOCAL directive 59
common 20
compiler 193

options
-qlist 194
-qsmp=noauto 194

compiler option
-q64 22
-qarch 19, 23
-qintsize 23
213

-qnosave 34
-qreport=hotlist 31
-qreport=smplist 30, 44
-qsave 34
-qsmp 29, 34, 59
-qsmp=nested_par 53
-qsmp=schedule=static 55

Compiler Options 112
Compiler Tuning 127
computational fluid dynamics

FIRE 162
congruence class 88
contention scope 186
control dependence 37
controlled 20
controlled automatic 20
convolution 91
Convolutions 68
copy 95

aggregate rates 147
rates 71
unrolling 71

Correlations 68
cost-based analysis 36, 45
CPU

POWER3 7
CPU Tuning 135
CPU tuning 90
CRAY

porting 70
CRITICAL directive 59
CRITICAL SECTION 195
CVMGT 117
cyclic scheduling 54

D
data 20, 33
data dependence 37
data transfer rate 88, 93
DAXPY 72, 98

best of runs 100
single run 99

dcopy 70
dedicated communicator 86
Dense Linear Algebraic 66, 68
DGEMM 72
directives

ASSERT 194

comments 197
CRITICAL 195
INDEPENDENT 194
PARALLEL DO 194
using 193

distributed memory
FIRE 164

divides 93
DO SERIAL 48
draft 7

POSIX 192

E
Eigensystem Analysis 66, 68
Eigenvalues Solver 169
END PARALLEL DO directive 59
environment variables 188

AIXTHREAD_MINKTHREADS 188
AIXTHREAD_MNRATIO 188
AIXTHREAD_SCOPE 187, 188
AIXTHREAD_SLPRATIO 188
scheduling 187, 188
SPINLOOPTIME 188
XLSMPOPTS 187
YIELDLOOPTIME 188

ESSL 65
BLAS 66
complex version 67
Convolutions 68
copy 70

rates 71
Correlations 68
DAXPY 72

best run 72
dcopy 70
DGEMM 72
Eigensystem Analysis 68
engineering 65
Fourier Transforms 68
guide and reference 70
Interpolation 69
Linear Algebra Subprograms 67
Linear Algebraic Equations 68
Matrix Operations 68
memcpy 70
PBLAS 66
performance 65, 70
performance report 70
214 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

platforms 67
portability 65
porting 70
prefetch 70
Random Number Generation 69
real version 67
routines 65
ScaLAPACK 66
scientific 65
sort 73
sorting 73
Sorting and Searching 69
subroutines 65
using 70

Euler’s equation 78
example code

directives 193, 194
thread 193, 195

expv 77

F
f_pthread_attr_init() 196
f_pthread_attr_setdetachstate() 196
f_pthread_attr_t 196
f_pthread_create() 195
f_pthread_equal() 195
f_pthread_join() 196
f_pthread_self() 195
f_pthread_t 196
false sharing 195
fetch_and_add 82
Finite Difference Kernel 167
floating point

pipes 90
units 87

floating point registers 124
floating point to integer conversion 94, 150
Floating Point Unit 123
floating-point operation

per cycle 7
flow dependence 37, 40, 43, 56
FMA. 125
FMA-bound loop 139
Fortran

compiler
option -qarch=com 75
option -qarch=pwr3 75

compiler flags 89

O2 89
O3 90
q64 90
qarch=pwr3 90
qfloat=hsflt 90
qstrict 90

complex exp() 78
intrinsic functions 73
PThread Module 194

example 194
Fortran V4 161
Fourier Transforms 67, 68
FPU 123
fractional part of a number 95

G
general-purpose registers 181

H
Hand Tuning Review 114
hardware

sqrt() 75
heap 20, 33
Hot spot analysis 109
hsflt 90, 93

I
I/O

bound 165
I/O Tuning 108
IBM SP 81
IF clause 53
In-Cache Tuning Techniques 137
INDEPENDENT 194
initial thread 184

main routine 184
instruction-address register 181
INTEGER*8 95
interchangeability

processor 182
interleaving 89
Interpolation 69
intrinsic functions 73

K
kernel benchmark

FIRE 163
 215

kernel thread 185
minimum numbers 188
reclaimed 188

L
L1 cache 88
L2 cache 89, 98, 101
LAPACK 151
LASTPRIVATE clause 52
latency 86, 97
Level 1 BLAS 67
Level 1 Data Cache 119
Level 2 BLAS 67
Level 2 Data Cache 122
Level 2 PBLAS 66
Level 3 BLAS 68
Level 3 PBLAS 66
libmassv.a 74
libmassvp2.a 74
library

ESSL 65
MASS 65
ScaLAPACK 66

Linear Algebra Subprograms 67
Linear Algebraic Equations 66, 68
Linear Least Squares 68
linker

option
-L 74
-l 74

linker option
-bmaxdata 21, 34
-bmaxstack 21

linking thread programs 195
LINPACK 173
LINPACK DP 173
LINPACK TPP 173
Load/Store-bound Loop 139
loads

multiple 92
loads and stores 101
loopback 161

M
M:1 model 188
M:N model 189, 192
MASS 65, 73

accuracy 73

algorithm 77
complex exp() 78
cycles 75
division 75
EXP() 65
exponential function 76
functions 75

expv 77
vsincos 78

libmassv.a 74
libmassvp2.a 74
library

linking 74
memory operations 74
performance 65, 75, 76
portability 65, 75
scalar version 73
sources 75
speedup 75, 78
sqrt() 75
square root 75
thread safe 74
tuning 77
using 74
vector version 74
web page 74

Matrix Operations 68
memcpy 70
memory bandwidth

FIRE 162
memory tuning 95
message passing interface (MPI) 81
model 590 161
model F50

application performance 165
module

pthread interface 194
MPI

asynchronous transfer rates 85
communication rates 83
loopback 161
scenarios 81
synchronous transfer rates 85
threads 82
userspace 81

MPICH 81, 83, 158
multiprocessors

design 181
symmetrical 182
216 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

system architectures 181
multi-threaded

main routine 184
MxN unrolling 143

N
NAS NPB 1.0 167, 175
NAS NPB 2.3 167
NAS Parallel Benchmarks 167, 175
NUM_PARTHDS intrinsic function 56
NUM_PARTHDS() intrinsic function 60
NUM_USRTHDS() intrinsic function 60

O
Object Code Listing 127
oil reservoir simulator 150, 160
OpenMP 29, 58

BARRIER 59
conditional compilation 59
directive sentinel 59
OMP_GET_NUM_PROCS() 60
OMP_SET_DYNAMIC() 60
OMP_SET_LOCK() 60
OMP_SET_NUM_THREADS() 60
THREADPRIVATE 60

optimization
techniques 65

optimization options of XL Fortran 112
outliner 17, 33
output dependence 38, 41, 43

P
P2SC 2
Parallel Coding 144
PARALLEL DO 194
PARALLEL DO directive 51, 59
Parallel Programming 144
PARALLEL REGION directive 59
PARALLEL SECTIONS directive 53, 59
parallelism analysis 37, 38
parallelization

report 193
PBLAS 157
PBLAS L2 66
PBLAS L3 66
Peak Megaflops 126
performace

MASS 75
performance

copy 71
ESSL 65
FIRE 164
MASS 65, 73
POWER3 65
RADIOSS 166
report 70
SMP 164
throughput 166
unrolling 71

PERMUTATION directive 54
portability

MASS 75
porting

OpenMP 58
POSIX 183

1003.1c 192
draft 7 192

POSIX threads 59
POWER1 1
POWER2 2
POWER3 3, 7

decode/dispatch 7
performance 65
SMP 7

POWER3 (Model 260) Architecture 119
PowerPC

64-bit 7
PowerPC 601 3
PowerPC 603 3
PowerPC 604 3
PowerPC 604e 3
prefetch 70, 88, 120

individual cache lines 101
single stream 98
streams 88

pre-stack migration 150
priority

thread 186
PRIVATE clause 51
process

address space 184
forking 185
group ID 183
ID 183
physical resources 181
properties 183
 217

single-threaded 183
system resources 184
user ID 183

process contention scope 186
processor

POWER3 7
processor affinity 187
Profiling 109
program

commercial 65
program, eigenvalues solver 169
programming

compare 197
Pthread

condition variable 61
mutex object 61

pthread
advantage 197

PTHREAD_CREATE_UNDETACHED 194
Pthreads 59

Q
q64 95
-qarch 112
-qfloat=hsflt 112
-qstrict 112
quick sort 73

R
RADIOSS 150
Random Number Generation 67, 69
real memory 98
real storage 123
reciprocal 93
reciprocal multiply 118
REDUCTION clause 52
registers 124
rename registers 124
renaming 124
RS/6000

model F50 165
multiprocessors 182
symmetrical multiprocessors 182

S
SAVE 35
SCALAPACK 157

ScaLAPACK 66
SCHED_FIFO 187
SCHED_OTHER 187
SCHED_RR 187
SCHEDULE clause 53
SCHEDULE directive 54
scheduler 185
scheduling

changing 197
policy 186

SECTION directive 59
segment 19, 34
Set-associativity 119
shared memory segment 81
single stream prefetch 98
Singular Value Analysis 66
size 20
SMP

OpenMP 58
runtime environment 61

SMP directives 193
using 193

SMP performance
FIRE 164

Sorting and Searching 69
Sparse Linear Algebraic 66, 68
SPEC95 174
SPECfp_base95 174
SPECfp95 174
SPECint_base95 174
SPECint95 174
speedup

MASS 75
SPINLOOPTIME 188
sPPM 83, 150
square root 75
stack 20, 33
static 20, 34
STREAM 174
stream address filters 88
stream rates

data in cache 93
data not in cache 97

stride 129
large 102

cache effects 102
TLB effects 103

Stride Minimization 129
strip mining 132
218 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

symmetrical multiprocessor
concepts and architecture 181

synchronous send and receive 84
system scheduler 185
system scope 186

default 187
I/O 186

T
Theoretical Performance for Simple Loops 135
thread 181

1:1 model 189
address space 183
AIX implementation details 181
AIXTHREAD_SCOPE 187
API 183
attribute 194
binary compatibility 184
bound 190
closing file 184
conclusions 197
contention scope 186

concept 186
default 187
I/O 186
intra-process synchronizations 186
process 186
system 186

directives example 193
environment variables 187
errno 184
example program 193
execution state 181
false sharing 195
flow of control 183
Fortran interface 59
Fortran POSIX interface 181
functions

f_pthread_attr_init() 196
f_pthread_attr_setdetachstate() 196
f_pthread_create() 195
f_pthread_equal() 195
f_pthread_join() 196
f_pthread_self() 195

hybrid model 183
IEEE POSIX 1003.1-1996 183
implementation 185
implementation models 182

initial thread 184
binary compatibility 184
compatibility 184
created 184
main routine 184
special properties 184

introduction 181
kernel scheduled 182
kernel thread 185
kernel-thread model 183
libpthreads.a 185
library 185

scaling factor 188
library-thread model 182
lightweight processes 183
linking 195
M:1 model 188
M:N model 189, 192
M:N model. 183
main routine 184
managing 187
model 182, 183
models 188
nice 186
POSIX conform 183
POSIX example 193
priority 186
process contention scope 186
processes 186
processor affinity 187
properties 183, 184
proprietary interface 185
pthread_attr_setscope() 187
renice 186
run queue 186
scaling factor 188
schedulable entity 184, 185
scheduler 185, 186
scheduling 185, 187

default 187
process-level control 187
SCHED_FIFO 187
SCHED_OTHER 187
SCHED_RR 187
thread-level control 187

scheduling policy 186, 187
scheduling properties 184
scheduling variables 186
setpri 186
 219

setpriority 186
shared system resources 184
stack 184
start 195
structures 194
support 181, 185
system 185
system scheduler 185
time slice 186
tuning 187
types

f_pthread_attr_t 196
f_pthread_t 196

unbound 190
user threads 185
variables 186
virtual processors 188
VP 188
yield 186

thread models 188
THREADLOCAL directive 56, 59
THREADPRIVATE directive 60
throughput

RADIOSS 166
user programs 149

throughput measurements 147
throughput ratio 150, 161
TLB 123

associative 103
large stride effects 103
stride versus loop count 105
visual representation 103

TLB miss 103
Translation Lookaside Buffer 123
Translation Lookaside Buffer (TLB) 89
tridiagonal solver 94
tuning

convolution 91
copy 95
CPU 90
DAXPY 98
divides 93
floating point to integer conversion 94
fractional part of a number 95
loads and stores 101
MASS 77
memory 95
multiple streams 97
techniques 65

Tuning for Floating Point Performance 126
Tuning for I/O 108
Tuning for the CPU 135
Tuning Guide 107
Tuning Process 107

U
ulimit 21
unrolling 90, 92, 138

FIRE 164
unrolling, MxN 143
user data 21, 33
user programs

throughput 149
user threads 185

V
vector codes, enabling to POWER3

conditional processing 178
data access 177
data dependency and recursive 177
vector length 178

vector processing 101
virtual memory 98
virtual processors 188
Virtual storage 123
VP 190
vsincos 78

W
weather forecast 150, 161
working set size 150, 161

X
xgprof 111
XL Fortran

qsort 73
xlf_r 30, 34
xlf90_r 30, 34, 193
XLSMP runtime environment 61
XLSMPOPTS 187
XLSMPOPTS environment variable 57
Xprofiler 111

Y
YIELDLOOPTIME 188
220 RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide

© Copyright IBM Corp. 1998 221

ITSO Redbook Evaluation

RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide
SG24-5155-00

Your feedback is very important to help us maintain the quality of ITSO redbooks. Please complete
this questionnaire and return it using one of the following methods:

 • Use the online evaluation form found at http://www.redbooks.ibm.com
 • Fax this form to: USA International Access Code 914 432 8264
 • Send your comments in an Internet note to redbook@us.ibm.com

Which of the following best describes you?
_ Customer _ Business Partner _ Solution Developer _ IBM employee
_ None of the above

Please rate your overall satisfaction with this book using the scale:
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction __________

Please answer the following questions:

Was this redbook published in time for your needs? Yes___ No___

If no, please explain:

What other redbooks would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

P
ri

nt
ed

 in
 t

he
 U

.S
.A

.
SG

24
-5

15
5-

00

RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide SG24-5155-00

	Contents
	Figures
	Tables
	Preface
	The Team That Wrote This Redbook
	Comments Welcome

	Chapter 1. Introduction
	1.1 RS/6000 Processor Evolution
	1.1.1 POWER1
	1.1.2 POWER2
	1.1.3 PowerPC
	1.1.4 POWER3

	1.2 SMP-Based System Views
	1.2.1 Job Level Parallelism with Single CPU Jobs
	1.2.2 Automatic Parallelization (Fortran)
	1.2.3 Compiler Directives
	1.2.4 Message Passing Interface
	1.2.5 Using POSIX Threads
	1.2.6 Combined MPI/Threads Paradigm

	Chapter 2. The POWER3 Processor
	2.1 Processor Overview
	2.2 POWER3 Execution Core
	2.3 POWER3 Roadmap
	2.4 POWER3-Based Systems
	2.4.1 RS/6000 43P 7043 Model 260
	2.4.2 IBM RS/6000 SP Nodes
	2.4.3 DOE ASCI Project

	Chapter 3. XL Fortran Version 5
	3.1 SMP Support
	3.2 Support for POWER3
	3.3 64-Bit Support
	3.3.1 Fortran Storage Classes
	3.3.2 32-Bit Mode
	3.3.3 32-Bit Mode, Large Address Space Model
	3.3.4 64-Bit Mode
	3.3.5 Compiler Defaults and Limits
	3.3.6 64-bit Integer Arithmetic Support

	3.4 Performance Improvements over Previous XL Fortran

	Chapter 4. Using the SMP Feature of XL Fortran
	4.1 How to Compile, Link, and Execute
	4.2 Consideration of Storage Classes in 32-Bit Mode
	4.3 Conditions for Automatic Parallelization
	4.4 Automatic Parallelization - Parallelism Analysis
	4.4.1 Examples of Parallelism Analysis
	4.4.2 XL Fortran Messages Related to Parallelization

	4.5 Automatic Parallelization - Cost-Based Analysis
	4.5.1 Cost-Based Analysis - Single Loops
	4.5.2 Cost-Based Analysis - Nested Loops
	4.5.3 How to Affect the Decision of Cost-Based Analysis

	4.6 Directives
	4.6.1 PARALLEL DO Compiler Directive
	4.6.2 PARALLEL SECTIONS Compiler Directive
	4.6.3 PERMUTATION Compiler Directive
	4.6.4 SCHEDULE Compiler Directive
	4.6.5 THREADLOCAL Compiler Directive

	4.7 NUM_PARTHDS Intrinsic Function
	4.8 XLSMPOPTS Environment Variable
	4.9 OpenMP Porting Considerations

	Chapter 5. Performance Libraries
	5.1 The ESSL Library
	5.1.1 Benefits of Using ESSL
	5.1.2 How to Use ESSL
	5.1.3 Performance Examples of ESSL

	5.2 MASS
	5.2.1 How to Use the MASS Library
	5.2.2 Performance of the MASS Library
	5.2.3 Further Tuning Possibilities Using Vector MASS

	Chapter 6. Message Passing Interface
	6.1 MPI in an SMP Environment
	6.2 MPI Communication Rates

	Chapter 7. Performance and Tuning Analysis
	7.1 Relevant Information
	7.2 CPU Tuning
	7.2.1 Unrolling
	7.2.2 Divides
	7.2.3 Floating Point to Integer Conversion
	7.2.4 Fractional Part of a Number

	7.3 Memory Tuning
	7.3.1 Copy
	7.3.2 Multiple Streams
	7.3.3 DAXPY
	7.3.4 Loads and Stores
	7.3.5 Prefetching Individual Cache Lines

	7.4 Large Stride
	7.4.1 Cache Effects
	7.4.2 Translation Lookaside Buffer Effects

	Chapter 8. Fortran Tuning Guide for Maximum Megaflops
	8.1 The Tuning Process
	8.1.1 Tuning for I/O
	8.1.2 Locating the Hot Spots (Profiling)
	8.1.3 Use Pre-tuned Code, Such As ESSL
	8.1.4 Hand Tune the Code

	8.2 Recommended Compiler Options
	8.3 Architecture Independent Hand Tuning Review
	8.3.1 Basic Coding Practices for Performance
	8.3.2 Commonly Occurring Examples

	8.4 Key Aspects of POWER3 (Model 260) Architecture
	8.4.1 The POWER3 (Model 260) Level 1 Data Cache
	8.4.2 The POWER3 (Model 260) Level 2 Data Cache
	8.4.3 The Translation Lookaside Buffer (TLB)
	8.4.4 The Superscalar Floating Point Units and Peak Megaflops

	8.5 Tuning for Floating Point Performance on POWER3 (Model 260)
	8.5.1 Letting the Compiler Do the Tuning
	8.5.2 Getting and Understanding an Object Code Listing
	8.5.3 Tuning for the L1 Cache
	8.5.4 Tuning for the CPU

	8.6 Some Comments on Parallel Coding for Model 260

	Chapter 9. Throughput Measurements
	9.1 Copy Program
	9.2 User Programs
	9.3 Case Study: Matrix Multiplication
	9.3.1 The Computational Kernel
	9.3.2 Single Processor Implementation of DGEMM
	9.3.3 Automatically Parallelized DGEMM
	9.3.4 MPI Implementations

	Chapter 10. Kernels, Codes, and Benchmarks
	10.1 GAMESS
	10.2 Oil Reservoir Simulator
	10.3 Weather Forecast Code
	10.4 Computational Fluid Dynamics: FIRE
	10.5 Crash Worthiness Analysis: RADIOSS
	10.6 Finite Difference Kernel
	10.7 Iterative Eigenvalues Solver

	Appendix A. Industry Standard Benchmarks
	A.1 LINPACK Benchmark
	A.2 SPEC95
	A.3 STREAM
	A.4 NAS NPB 1.0

	Appendix B. Enabling Vector Codes to POWER3
	B.1 Data Access
	B.2 Data Dependency and Recursive Code
	B.3 Vector Length
	B.4 Conditional Processing

	Appendix C. Threads
	C.1 Symmetric Multiprocessing (SMP) Concepts and Architecture
	C.2 Thread Implementation Model
	C.3 Understanding Threads
	C.3.1 Threads and Processes
	C.3.2 Threads Implementation
	C.3.3 Thread Scheduling
	C.3.4 Thread Models and Virtual Processors
	C.3.5 Contention Scope and Concurrency Level
	C.3.6 libpthreads.a POSIX Threads Library
	C.3.7 libpthreads_compat.a POSIX Draft 7 Threads Library

	C.4 A Simple Thread Program
	C.4.1 Using SMP Directives
	C.4.2 Using the Fortran PThread Module
	C.4.3 Conclusions

	Appendix D. Special Notices
	Appendix E. Related Publications
	E.1 International Technical Support Organization Publications
	E.2 Redbooks on CD-ROMs
	E.3 Other Publications
	E.4 Information Available on the Internet

	How to Get ITSO Redbooks
	How IBM Employees Can Get ITSO Redbooks
	How Customers Can Get ITSO Redbooks
	IBM Redbook Order Form

	List of Abbreviations
	Index
	ITSO Redbook Evaluation

